Polytope of Type {5,10,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,10,10}*1000a
if this polytope has a name.
Group : SmallGroup(1000,106)
Rank : 4
Schlafli Type : {5,10,10}
Number of vertices, edges, etc : 5, 25, 50, 10
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 10
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {5,10,10,2} of size 2000
Vertex Figure Of :
   {2,5,10,10} of size 2000
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,10,5}*500
   5-fold quotients : {5,2,10}*200
   10-fold quotients : {5,2,5}*100
   25-fold quotients : {5,2,2}*40
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,10,20}*2000a, {10,10,10}*2000a
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)( 11, 16)
( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)( 32, 50)
( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)
( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)( 61, 66)
( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 77, 80)( 78, 79)( 81, 96)( 82,100)
( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)( 89, 93)( 90, 92)
(102,105)(103,104)(106,121)(107,125)(108,124)(109,123)(110,122)(111,116)
(112,120)(113,119)(114,118)(115,117)(127,130)(128,129)(131,146)(132,150)
(133,149)(134,148)(135,147)(136,141)(137,145)(138,144)(139,143)(140,142)
(152,155)(153,154)(156,171)(157,175)(158,174)(159,173)(160,172)(161,166)
(162,170)(163,169)(164,168)(165,167)(177,180)(178,179)(181,196)(182,200)
(183,199)(184,198)(185,197)(186,191)(187,195)(188,194)(189,193)(190,192)
(202,205)(203,204)(206,221)(207,225)(208,224)(209,223)(210,222)(211,216)
(212,220)(213,219)(214,218)(215,217)(227,230)(228,229)(231,246)(232,250)
(233,249)(234,248)(235,247)(236,241)(237,245)(238,244)(239,243)(240,242);;
s1 := (  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 21)( 12, 25)( 13, 24)
( 14, 23)( 15, 22)( 17, 20)( 18, 19)( 26, 31)( 27, 35)( 28, 34)( 29, 33)
( 30, 32)( 36, 46)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 42, 45)( 43, 44)
( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 71)( 62, 75)( 63, 74)
( 64, 73)( 65, 72)( 67, 70)( 68, 69)( 76, 81)( 77, 85)( 78, 84)( 79, 83)
( 80, 82)( 86, 96)( 87,100)( 88, 99)( 89, 98)( 90, 97)( 92, 95)( 93, 94)
(101,106)(102,110)(103,109)(104,108)(105,107)(111,121)(112,125)(113,124)
(114,123)(115,122)(117,120)(118,119)(126,131)(127,135)(128,134)(129,133)
(130,132)(136,146)(137,150)(138,149)(139,148)(140,147)(142,145)(143,144)
(151,156)(152,160)(153,159)(154,158)(155,157)(161,171)(162,175)(163,174)
(164,173)(165,172)(167,170)(168,169)(176,181)(177,185)(178,184)(179,183)
(180,182)(186,196)(187,200)(188,199)(189,198)(190,197)(192,195)(193,194)
(201,206)(202,210)(203,209)(204,208)(205,207)(211,221)(212,225)(213,224)
(214,223)(215,222)(217,220)(218,219)(226,231)(227,235)(228,234)(229,233)
(230,232)(236,246)(237,250)(238,249)(239,248)(240,247)(242,245)(243,244);;
s2 := (  1, 26)(  2, 30)(  3, 29)(  4, 28)(  5, 27)(  6, 32)(  7, 31)(  8, 35)
(  9, 34)( 10, 33)( 11, 38)( 12, 37)( 13, 36)( 14, 40)( 15, 39)( 16, 44)
( 17, 43)( 18, 42)( 19, 41)( 20, 45)( 21, 50)( 22, 49)( 23, 48)( 24, 47)
( 25, 46)( 51,101)( 52,105)( 53,104)( 54,103)( 55,102)( 56,107)( 57,106)
( 58,110)( 59,109)( 60,108)( 61,113)( 62,112)( 63,111)( 64,115)( 65,114)
( 66,119)( 67,118)( 68,117)( 69,116)( 70,120)( 71,125)( 72,124)( 73,123)
( 74,122)( 75,121)( 77, 80)( 78, 79)( 81, 82)( 83, 85)( 86, 88)( 89, 90)
( 91, 94)( 92, 93)( 96,100)( 97, 99)(126,151)(127,155)(128,154)(129,153)
(130,152)(131,157)(132,156)(133,160)(134,159)(135,158)(136,163)(137,162)
(138,161)(139,165)(140,164)(141,169)(142,168)(143,167)(144,166)(145,170)
(146,175)(147,174)(148,173)(149,172)(150,171)(176,226)(177,230)(178,229)
(179,228)(180,227)(181,232)(182,231)(183,235)(184,234)(185,233)(186,238)
(187,237)(188,236)(189,240)(190,239)(191,244)(192,243)(193,242)(194,241)
(195,245)(196,250)(197,249)(198,248)(199,247)(200,246)(202,205)(203,204)
(206,207)(208,210)(211,213)(214,215)(216,219)(217,218)(221,225)(222,224);;
s3 := (  1,126)(  2,130)(  3,129)(  4,128)(  5,127)(  6,131)(  7,135)(  8,134)
(  9,133)( 10,132)( 11,136)( 12,140)( 13,139)( 14,138)( 15,137)( 16,141)
( 17,145)( 18,144)( 19,143)( 20,142)( 21,146)( 22,150)( 23,149)( 24,148)
( 25,147)( 26,226)( 27,230)( 28,229)( 29,228)( 30,227)( 31,231)( 32,235)
( 33,234)( 34,233)( 35,232)( 36,236)( 37,240)( 38,239)( 39,238)( 40,237)
( 41,241)( 42,245)( 43,244)( 44,243)( 45,242)( 46,246)( 47,250)( 48,249)
( 49,248)( 50,247)( 51,201)( 52,205)( 53,204)( 54,203)( 55,202)( 56,206)
( 57,210)( 58,209)( 59,208)( 60,207)( 61,211)( 62,215)( 63,214)( 64,213)
( 65,212)( 66,216)( 67,220)( 68,219)( 69,218)( 70,217)( 71,221)( 72,225)
( 73,224)( 74,223)( 75,222)( 76,176)( 77,180)( 78,179)( 79,178)( 80,177)
( 81,181)( 82,185)( 83,184)( 84,183)( 85,182)( 86,186)( 87,190)( 88,189)
( 89,188)( 90,187)( 91,191)( 92,195)( 93,194)( 94,193)( 95,192)( 96,196)
( 97,200)( 98,199)( 99,198)(100,197)(101,151)(102,155)(103,154)(104,153)
(105,152)(106,156)(107,160)(108,159)(109,158)(110,157)(111,161)(112,165)
(113,164)(114,163)(115,162)(116,166)(117,170)(118,169)(119,168)(120,167)
(121,171)(122,175)(123,174)(124,173)(125,172);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(250)!(  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)
( 11, 16)( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)
( 32, 50)( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)
( 40, 42)( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)
( 61, 66)( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 77, 80)( 78, 79)( 81, 96)
( 82,100)( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)( 89, 93)
( 90, 92)(102,105)(103,104)(106,121)(107,125)(108,124)(109,123)(110,122)
(111,116)(112,120)(113,119)(114,118)(115,117)(127,130)(128,129)(131,146)
(132,150)(133,149)(134,148)(135,147)(136,141)(137,145)(138,144)(139,143)
(140,142)(152,155)(153,154)(156,171)(157,175)(158,174)(159,173)(160,172)
(161,166)(162,170)(163,169)(164,168)(165,167)(177,180)(178,179)(181,196)
(182,200)(183,199)(184,198)(185,197)(186,191)(187,195)(188,194)(189,193)
(190,192)(202,205)(203,204)(206,221)(207,225)(208,224)(209,223)(210,222)
(211,216)(212,220)(213,219)(214,218)(215,217)(227,230)(228,229)(231,246)
(232,250)(233,249)(234,248)(235,247)(236,241)(237,245)(238,244)(239,243)
(240,242);
s1 := Sym(250)!(  1,  6)(  2, 10)(  3,  9)(  4,  8)(  5,  7)( 11, 21)( 12, 25)
( 13, 24)( 14, 23)( 15, 22)( 17, 20)( 18, 19)( 26, 31)( 27, 35)( 28, 34)
( 29, 33)( 30, 32)( 36, 46)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 42, 45)
( 43, 44)( 51, 56)( 52, 60)( 53, 59)( 54, 58)( 55, 57)( 61, 71)( 62, 75)
( 63, 74)( 64, 73)( 65, 72)( 67, 70)( 68, 69)( 76, 81)( 77, 85)( 78, 84)
( 79, 83)( 80, 82)( 86, 96)( 87,100)( 88, 99)( 89, 98)( 90, 97)( 92, 95)
( 93, 94)(101,106)(102,110)(103,109)(104,108)(105,107)(111,121)(112,125)
(113,124)(114,123)(115,122)(117,120)(118,119)(126,131)(127,135)(128,134)
(129,133)(130,132)(136,146)(137,150)(138,149)(139,148)(140,147)(142,145)
(143,144)(151,156)(152,160)(153,159)(154,158)(155,157)(161,171)(162,175)
(163,174)(164,173)(165,172)(167,170)(168,169)(176,181)(177,185)(178,184)
(179,183)(180,182)(186,196)(187,200)(188,199)(189,198)(190,197)(192,195)
(193,194)(201,206)(202,210)(203,209)(204,208)(205,207)(211,221)(212,225)
(213,224)(214,223)(215,222)(217,220)(218,219)(226,231)(227,235)(228,234)
(229,233)(230,232)(236,246)(237,250)(238,249)(239,248)(240,247)(242,245)
(243,244);
s2 := Sym(250)!(  1, 26)(  2, 30)(  3, 29)(  4, 28)(  5, 27)(  6, 32)(  7, 31)
(  8, 35)(  9, 34)( 10, 33)( 11, 38)( 12, 37)( 13, 36)( 14, 40)( 15, 39)
( 16, 44)( 17, 43)( 18, 42)( 19, 41)( 20, 45)( 21, 50)( 22, 49)( 23, 48)
( 24, 47)( 25, 46)( 51,101)( 52,105)( 53,104)( 54,103)( 55,102)( 56,107)
( 57,106)( 58,110)( 59,109)( 60,108)( 61,113)( 62,112)( 63,111)( 64,115)
( 65,114)( 66,119)( 67,118)( 68,117)( 69,116)( 70,120)( 71,125)( 72,124)
( 73,123)( 74,122)( 75,121)( 77, 80)( 78, 79)( 81, 82)( 83, 85)( 86, 88)
( 89, 90)( 91, 94)( 92, 93)( 96,100)( 97, 99)(126,151)(127,155)(128,154)
(129,153)(130,152)(131,157)(132,156)(133,160)(134,159)(135,158)(136,163)
(137,162)(138,161)(139,165)(140,164)(141,169)(142,168)(143,167)(144,166)
(145,170)(146,175)(147,174)(148,173)(149,172)(150,171)(176,226)(177,230)
(178,229)(179,228)(180,227)(181,232)(182,231)(183,235)(184,234)(185,233)
(186,238)(187,237)(188,236)(189,240)(190,239)(191,244)(192,243)(193,242)
(194,241)(195,245)(196,250)(197,249)(198,248)(199,247)(200,246)(202,205)
(203,204)(206,207)(208,210)(211,213)(214,215)(216,219)(217,218)(221,225)
(222,224);
s3 := Sym(250)!(  1,126)(  2,130)(  3,129)(  4,128)(  5,127)(  6,131)(  7,135)
(  8,134)(  9,133)( 10,132)( 11,136)( 12,140)( 13,139)( 14,138)( 15,137)
( 16,141)( 17,145)( 18,144)( 19,143)( 20,142)( 21,146)( 22,150)( 23,149)
( 24,148)( 25,147)( 26,226)( 27,230)( 28,229)( 29,228)( 30,227)( 31,231)
( 32,235)( 33,234)( 34,233)( 35,232)( 36,236)( 37,240)( 38,239)( 39,238)
( 40,237)( 41,241)( 42,245)( 43,244)( 44,243)( 45,242)( 46,246)( 47,250)
( 48,249)( 49,248)( 50,247)( 51,201)( 52,205)( 53,204)( 54,203)( 55,202)
( 56,206)( 57,210)( 58,209)( 59,208)( 60,207)( 61,211)( 62,215)( 63,214)
( 64,213)( 65,212)( 66,216)( 67,220)( 68,219)( 69,218)( 70,217)( 71,221)
( 72,225)( 73,224)( 74,223)( 75,222)( 76,176)( 77,180)( 78,179)( 79,178)
( 80,177)( 81,181)( 82,185)( 83,184)( 84,183)( 85,182)( 86,186)( 87,190)
( 88,189)( 89,188)( 90,187)( 91,191)( 92,195)( 93,194)( 94,193)( 95,192)
( 96,196)( 97,200)( 98,199)( 99,198)(100,197)(101,151)(102,155)(103,154)
(104,153)(105,152)(106,156)(107,160)(108,159)(109,158)(110,157)(111,161)
(112,165)(113,164)(114,163)(115,162)(116,166)(117,170)(118,169)(119,168)
(120,167)(121,171)(122,175)(123,174)(124,173)(125,172);
poly := sub<Sym(250)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope