include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,5,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,5,2}*1000
if this polytope has a name.
Group : SmallGroup(1000,106)
Rank : 4
Schlafli Type : {10,5,2}
Number of vertices, edges, etc : 50, 125, 25, 2
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{10,5,2,2} of size 2000
Vertex Figure Of :
{2,10,5,2} of size 2000
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {10,5,2}*200
25-fold quotients : {2,5,2}*40
Covers (Minimal Covers in Boldface) :
2-fold covers : {10,10,2}*2000b
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)(13,19)
(14,18)(15,17);;
s1 := ( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)(11,21)(12,22)(13,23)(14,24)(15,25);;
s2 := ( 6,25)( 7,21)( 8,22)( 9,23)(10,24)(11,19)(12,20)(13,16)(14,17)(15,18);;
s3 := (26,27);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(27)!( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)
(13,19)(14,18)(15,17);
s1 := Sym(27)!( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)(11,21)(12,22)(13,23)(14,24)
(15,25);
s2 := Sym(27)!( 6,25)( 7,21)( 8,22)( 9,23)(10,24)(11,19)(12,20)(13,16)(14,17)
(15,18);
s3 := Sym(27)!(26,27);
poly := sub<Sym(27)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope