Polytope of Type {2,14,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,14,18}*1008
if this polytope has a name.
Group : SmallGroup(1008,507)
Rank : 4
Schlafli Type : {2,14,18}
Number of vertices, edges, etc : 2, 14, 126, 18
Order of s0s1s2s3 : 126
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,14,6}*336
   7-fold quotients : {2,2,18}*144
   9-fold quotients : {2,14,2}*112
   14-fold quotients : {2,2,9}*72
   18-fold quotients : {2,7,2}*56
   21-fold quotients : {2,2,6}*48
   42-fold quotients : {2,2,3}*24
   63-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  6, 21)(  7, 22)(  8, 23)(  9, 18)( 10, 19)( 11, 20)( 12, 15)( 13, 16)
( 14, 17)( 27, 42)( 28, 43)( 29, 44)( 30, 39)( 31, 40)( 32, 41)( 33, 36)
( 34, 37)( 35, 38)( 48, 63)( 49, 64)( 50, 65)( 51, 60)( 52, 61)( 53, 62)
( 54, 57)( 55, 58)( 56, 59)( 69, 84)( 70, 85)( 71, 86)( 72, 81)( 73, 82)
( 74, 83)( 75, 78)( 76, 79)( 77, 80)( 90,105)( 91,106)( 92,107)( 93,102)
( 94,103)( 95,104)( 96, 99)( 97,100)( 98,101)(111,126)(112,127)(113,128)
(114,123)(115,124)(116,125)(117,120)(118,121)(119,122);;
s2 := (  3,  6)(  4,  8)(  5,  7)(  9, 21)( 10, 23)( 11, 22)( 12, 18)( 13, 20)
( 14, 19)( 16, 17)( 24, 49)( 25, 48)( 26, 50)( 27, 46)( 28, 45)( 29, 47)
( 30, 64)( 31, 63)( 32, 65)( 33, 61)( 34, 60)( 35, 62)( 36, 58)( 37, 57)
( 38, 59)( 39, 55)( 40, 54)( 41, 56)( 42, 52)( 43, 51)( 44, 53)( 66, 69)
( 67, 71)( 68, 70)( 72, 84)( 73, 86)( 74, 85)( 75, 81)( 76, 83)( 77, 82)
( 79, 80)( 87,112)( 88,111)( 89,113)( 90,109)( 91,108)( 92,110)( 93,127)
( 94,126)( 95,128)( 96,124)( 97,123)( 98,125)( 99,121)(100,120)(101,122)
(102,118)(103,117)(104,119)(105,115)(106,114)(107,116);;
s3 := (  3, 87)(  4, 89)(  5, 88)(  6, 90)(  7, 92)(  8, 91)(  9, 93)( 10, 95)
( 11, 94)( 12, 96)( 13, 98)( 14, 97)( 15, 99)( 16,101)( 17,100)( 18,102)
( 19,104)( 20,103)( 21,105)( 22,107)( 23,106)( 24, 66)( 25, 68)( 26, 67)
( 27, 69)( 28, 71)( 29, 70)( 30, 72)( 31, 74)( 32, 73)( 33, 75)( 34, 77)
( 35, 76)( 36, 78)( 37, 80)( 38, 79)( 39, 81)( 40, 83)( 41, 82)( 42, 84)
( 43, 86)( 44, 85)( 45,109)( 46,108)( 47,110)( 48,112)( 49,111)( 50,113)
( 51,115)( 52,114)( 53,116)( 54,118)( 55,117)( 56,119)( 57,121)( 58,120)
( 59,122)( 60,124)( 61,123)( 62,125)( 63,127)( 64,126)( 65,128);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(1,2);
s1 := Sym(128)!(  6, 21)(  7, 22)(  8, 23)(  9, 18)( 10, 19)( 11, 20)( 12, 15)
( 13, 16)( 14, 17)( 27, 42)( 28, 43)( 29, 44)( 30, 39)( 31, 40)( 32, 41)
( 33, 36)( 34, 37)( 35, 38)( 48, 63)( 49, 64)( 50, 65)( 51, 60)( 52, 61)
( 53, 62)( 54, 57)( 55, 58)( 56, 59)( 69, 84)( 70, 85)( 71, 86)( 72, 81)
( 73, 82)( 74, 83)( 75, 78)( 76, 79)( 77, 80)( 90,105)( 91,106)( 92,107)
( 93,102)( 94,103)( 95,104)( 96, 99)( 97,100)( 98,101)(111,126)(112,127)
(113,128)(114,123)(115,124)(116,125)(117,120)(118,121)(119,122);
s2 := Sym(128)!(  3,  6)(  4,  8)(  5,  7)(  9, 21)( 10, 23)( 11, 22)( 12, 18)
( 13, 20)( 14, 19)( 16, 17)( 24, 49)( 25, 48)( 26, 50)( 27, 46)( 28, 45)
( 29, 47)( 30, 64)( 31, 63)( 32, 65)( 33, 61)( 34, 60)( 35, 62)( 36, 58)
( 37, 57)( 38, 59)( 39, 55)( 40, 54)( 41, 56)( 42, 52)( 43, 51)( 44, 53)
( 66, 69)( 67, 71)( 68, 70)( 72, 84)( 73, 86)( 74, 85)( 75, 81)( 76, 83)
( 77, 82)( 79, 80)( 87,112)( 88,111)( 89,113)( 90,109)( 91,108)( 92,110)
( 93,127)( 94,126)( 95,128)( 96,124)( 97,123)( 98,125)( 99,121)(100,120)
(101,122)(102,118)(103,117)(104,119)(105,115)(106,114)(107,116);
s3 := Sym(128)!(  3, 87)(  4, 89)(  5, 88)(  6, 90)(  7, 92)(  8, 91)(  9, 93)
( 10, 95)( 11, 94)( 12, 96)( 13, 98)( 14, 97)( 15, 99)( 16,101)( 17,100)
( 18,102)( 19,104)( 20,103)( 21,105)( 22,107)( 23,106)( 24, 66)( 25, 68)
( 26, 67)( 27, 69)( 28, 71)( 29, 70)( 30, 72)( 31, 74)( 32, 73)( 33, 75)
( 34, 77)( 35, 76)( 36, 78)( 37, 80)( 38, 79)( 39, 81)( 40, 83)( 41, 82)
( 42, 84)( 43, 86)( 44, 85)( 45,109)( 46,108)( 47,110)( 48,112)( 49,111)
( 50,113)( 51,115)( 52,114)( 53,116)( 54,118)( 55,117)( 56,119)( 57,121)
( 58,120)( 59,122)( 60,124)( 61,123)( 62,125)( 63,127)( 64,126)( 65,128);
poly := sub<Sym(128)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope