include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {14,4,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,4,6}*1008
if this polytope has a name.
Group : SmallGroup(1008,896)
Rank : 4
Schlafli Type : {14,4,6}
Number of vertices, edges, etc : 14, 42, 18, 9
Order of s0s1s2s3 : 28
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
7-fold quotients : {2,4,6}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)
(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(44,49)(45,48)(46,47)
(51,56)(52,55)(53,54)(58,63)(59,62)(60,61);;
s1 := ( 1, 2)( 3, 7)( 4, 6)( 8,23)( 9,22)(10,28)(11,27)(12,26)(13,25)(14,24)
(15,44)(16,43)(17,49)(18,48)(19,47)(20,46)(21,45)(29,30)(31,35)(32,34)(36,51)
(37,50)(38,56)(39,55)(40,54)(41,53)(42,52)(57,58)(59,63)(60,62);;
s2 := (22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)
(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)
(42,63);;
s3 := ( 1,29)( 2,30)( 3,31)( 4,32)( 5,33)( 6,34)( 7,35)( 8,22)( 9,23)(10,24)
(11,25)(12,26)(13,27)(14,28)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)
(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(63)!( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)
(23,28)(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(44,49)(45,48)
(46,47)(51,56)(52,55)(53,54)(58,63)(59,62)(60,61);
s1 := Sym(63)!( 1, 2)( 3, 7)( 4, 6)( 8,23)( 9,22)(10,28)(11,27)(12,26)(13,25)
(14,24)(15,44)(16,43)(17,49)(18,48)(19,47)(20,46)(21,45)(29,30)(31,35)(32,34)
(36,51)(37,50)(38,56)(39,55)(40,54)(41,53)(42,52)(57,58)(59,63)(60,62);
s2 := Sym(63)!(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)
(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)
(42,63);
s3 := Sym(63)!( 1,29)( 2,30)( 3,31)( 4,32)( 5,33)( 6,34)( 7,35)( 8,22)( 9,23)
(10,24)(11,25)(12,26)(13,27)(14,28)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)
(21,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56);
poly := sub<Sym(63)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s2*s1*s2*s3*s1*s2*s1*s2*s3*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope