Polytope of Type {6,21,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,21,2,2}*1008
if this polytope has a name.
Group : SmallGroup(1008,942)
Rank : 5
Schlafli Type : {6,21,2,2}
Number of vertices, edges, etc : 6, 63, 21, 2, 2
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,21,2,2}*336
   7-fold quotients : {6,3,2,2}*144
   9-fold quotients : {2,7,2,2}*112
   21-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)
(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)
(42,63);;
s1 := ( 1,22)( 2,28)( 3,27)( 4,26)( 5,25)( 6,24)( 7,23)( 8,36)( 9,42)(10,41)
(11,40)(12,39)(13,38)(14,37)(15,29)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30)
(44,49)(45,48)(46,47)(50,57)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58);;
s2 := ( 1, 9)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)(15,16)(17,21)(18,20)
(22,51)(23,50)(24,56)(25,55)(26,54)(27,53)(28,52)(29,44)(30,43)(31,49)(32,48)
(33,47)(34,46)(35,45)(36,58)(37,57)(38,63)(39,62)(40,61)(41,60)(42,59);;
s3 := (64,65);;
s4 := (66,67);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(67)!(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)
(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)
(42,63);
s1 := Sym(67)!( 1,22)( 2,28)( 3,27)( 4,26)( 5,25)( 6,24)( 7,23)( 8,36)( 9,42)
(10,41)(11,40)(12,39)(13,38)(14,37)(15,29)(16,35)(17,34)(18,33)(19,32)(20,31)
(21,30)(44,49)(45,48)(46,47)(50,57)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58);
s2 := Sym(67)!( 1, 9)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)(15,16)(17,21)
(18,20)(22,51)(23,50)(24,56)(25,55)(26,54)(27,53)(28,52)(29,44)(30,43)(31,49)
(32,48)(33,47)(34,46)(35,45)(36,58)(37,57)(38,63)(39,62)(40,61)(41,60)(42,59);
s3 := Sym(67)!(64,65);
s4 := Sym(67)!(66,67);
poly := sub<Sym(67)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope