include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,42,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,42,2}*1008b
if this polytope has a name.
Group : SmallGroup(1008,942)
Rank : 4
Schlafli Type : {6,42,2}
Number of vertices, edges, etc : 6, 126, 42, 2
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,14,2}*336, {2,42,2}*336
6-fold quotients : {2,21,2}*168
7-fold quotients : {6,6,2}*144a
9-fold quotients : {2,14,2}*112
18-fold quotients : {2,7,2}*56
21-fold quotients : {2,6,2}*48, {6,2,2}*48
42-fold quotients : {2,3,2}*24, {3,2,2}*24
63-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 22, 43)( 23, 44)( 24, 45)( 25, 46)( 26, 47)( 27, 48)( 28, 49)( 29, 50)
( 30, 51)( 31, 52)( 32, 53)( 33, 54)( 34, 55)( 35, 56)( 36, 57)( 37, 58)
( 38, 59)( 39, 60)( 40, 61)( 41, 62)( 42, 63)( 85,106)( 86,107)( 87,108)
( 88,109)( 89,110)( 90,111)( 91,112)( 92,113)( 93,114)( 94,115)( 95,116)
( 96,117)( 97,118)( 98,119)( 99,120)(100,121)(101,122)(102,123)(103,124)
(104,125)(105,126);;
s1 := ( 1, 22)( 2, 28)( 3, 27)( 4, 26)( 5, 25)( 6, 24)( 7, 23)( 8, 36)
( 9, 42)( 10, 41)( 11, 40)( 12, 39)( 13, 38)( 14, 37)( 15, 29)( 16, 35)
( 17, 34)( 18, 33)( 19, 32)( 20, 31)( 21, 30)( 44, 49)( 45, 48)( 46, 47)
( 50, 57)( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)( 64, 85)
( 65, 91)( 66, 90)( 67, 89)( 68, 88)( 69, 87)( 70, 86)( 71, 99)( 72,105)
( 73,104)( 74,103)( 75,102)( 76,101)( 77,100)( 78, 92)( 79, 98)( 80, 97)
( 81, 96)( 82, 95)( 83, 94)( 84, 93)(107,112)(108,111)(109,110)(113,120)
(114,126)(115,125)(116,124)(117,123)(118,122)(119,121);;
s2 := ( 1, 72)( 2, 71)( 3, 77)( 4, 76)( 5, 75)( 6, 74)( 7, 73)( 8, 65)
( 9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 79)( 16, 78)
( 17, 84)( 18, 83)( 19, 82)( 20, 81)( 21, 80)( 22, 93)( 23, 92)( 24, 98)
( 25, 97)( 26, 96)( 27, 95)( 28, 94)( 29, 86)( 30, 85)( 31, 91)( 32, 90)
( 33, 89)( 34, 88)( 35, 87)( 36,100)( 37, 99)( 38,105)( 39,104)( 40,103)
( 41,102)( 42,101)( 43,114)( 44,113)( 45,119)( 46,118)( 47,117)( 48,116)
( 49,115)( 50,107)( 51,106)( 52,112)( 53,111)( 54,110)( 55,109)( 56,108)
( 57,121)( 58,120)( 59,126)( 60,125)( 61,124)( 62,123)( 63,122);;
s3 := (127,128);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(128)!( 22, 43)( 23, 44)( 24, 45)( 25, 46)( 26, 47)( 27, 48)( 28, 49)
( 29, 50)( 30, 51)( 31, 52)( 32, 53)( 33, 54)( 34, 55)( 35, 56)( 36, 57)
( 37, 58)( 38, 59)( 39, 60)( 40, 61)( 41, 62)( 42, 63)( 85,106)( 86,107)
( 87,108)( 88,109)( 89,110)( 90,111)( 91,112)( 92,113)( 93,114)( 94,115)
( 95,116)( 96,117)( 97,118)( 98,119)( 99,120)(100,121)(101,122)(102,123)
(103,124)(104,125)(105,126);
s1 := Sym(128)!( 1, 22)( 2, 28)( 3, 27)( 4, 26)( 5, 25)( 6, 24)( 7, 23)
( 8, 36)( 9, 42)( 10, 41)( 11, 40)( 12, 39)( 13, 38)( 14, 37)( 15, 29)
( 16, 35)( 17, 34)( 18, 33)( 19, 32)( 20, 31)( 21, 30)( 44, 49)( 45, 48)
( 46, 47)( 50, 57)( 51, 63)( 52, 62)( 53, 61)( 54, 60)( 55, 59)( 56, 58)
( 64, 85)( 65, 91)( 66, 90)( 67, 89)( 68, 88)( 69, 87)( 70, 86)( 71, 99)
( 72,105)( 73,104)( 74,103)( 75,102)( 76,101)( 77,100)( 78, 92)( 79, 98)
( 80, 97)( 81, 96)( 82, 95)( 83, 94)( 84, 93)(107,112)(108,111)(109,110)
(113,120)(114,126)(115,125)(116,124)(117,123)(118,122)(119,121);
s2 := Sym(128)!( 1, 72)( 2, 71)( 3, 77)( 4, 76)( 5, 75)( 6, 74)( 7, 73)
( 8, 65)( 9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 79)
( 16, 78)( 17, 84)( 18, 83)( 19, 82)( 20, 81)( 21, 80)( 22, 93)( 23, 92)
( 24, 98)( 25, 97)( 26, 96)( 27, 95)( 28, 94)( 29, 86)( 30, 85)( 31, 91)
( 32, 90)( 33, 89)( 34, 88)( 35, 87)( 36,100)( 37, 99)( 38,105)( 39,104)
( 40,103)( 41,102)( 42,101)( 43,114)( 44,113)( 45,119)( 46,118)( 47,117)
( 48,116)( 49,115)( 50,107)( 51,106)( 52,112)( 53,111)( 54,110)( 55,109)
( 56,108)( 57,121)( 58,120)( 59,126)( 60,125)( 61,124)( 62,123)( 63,122);
s3 := Sym(128)!(127,128);
poly := sub<Sym(128)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope