include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,21,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,21,2}*1008
if this polytope has a name.
Group : SmallGroup(1008,942)
Rank : 5
Schlafli Type : {2,6,21,2}
Number of vertices, edges, etc : 2, 6, 63, 21, 2
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,2,21,2}*336
7-fold quotients : {2,6,3,2}*144
9-fold quotients : {2,2,7,2}*112
21-fold quotients : {2,2,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)
(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)(42,63)(43,64)
(44,65);;
s2 := ( 3,24)( 4,30)( 5,29)( 6,28)( 7,27)( 8,26)( 9,25)(10,38)(11,44)(12,43)
(13,42)(14,41)(15,40)(16,39)(17,31)(18,37)(19,36)(20,35)(21,34)(22,33)(23,32)
(46,51)(47,50)(48,49)(52,59)(53,65)(54,64)(55,63)(56,62)(57,61)(58,60);;
s3 := ( 3,11)( 4,10)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(17,18)(19,23)(20,22)
(24,53)(25,52)(26,58)(27,57)(28,56)(29,55)(30,54)(31,46)(32,45)(33,51)(34,50)
(35,49)(36,48)(37,47)(38,60)(39,59)(40,65)(41,64)(42,63)(43,62)(44,61);;
s4 := (66,67);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(67)!(1,2);
s1 := Sym(67)!(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)
(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)(42,63)(43,64)
(44,65);
s2 := Sym(67)!( 3,24)( 4,30)( 5,29)( 6,28)( 7,27)( 8,26)( 9,25)(10,38)(11,44)
(12,43)(13,42)(14,41)(15,40)(16,39)(17,31)(18,37)(19,36)(20,35)(21,34)(22,33)
(23,32)(46,51)(47,50)(48,49)(52,59)(53,65)(54,64)(55,63)(56,62)(57,61)(58,60);
s3 := Sym(67)!( 3,11)( 4,10)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(17,18)(19,23)
(20,22)(24,53)(25,52)(26,58)(27,57)(28,56)(29,55)(30,54)(31,46)(32,45)(33,51)
(34,50)(35,49)(36,48)(37,47)(38,60)(39,59)(40,65)(41,64)(42,63)(43,62)(44,61);
s4 := Sym(67)!(66,67);
poly := sub<Sym(67)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope