include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,33}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,33}*1056
if this polytope has a name.
Group : SmallGroup(1056,1017)
Rank : 4
Schlafli Type : {2,4,33}
Number of vertices, edges, etc : 2, 8, 132, 66
Order of s0s1s2s3 : 66
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,33}*528
4-fold quotients : {2,2,33}*264
11-fold quotients : {2,4,3}*96
12-fold quotients : {2,2,11}*88
22-fold quotients : {2,4,3}*48
44-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,137)( 4,138)( 5,135)( 6,136)( 7,141)( 8,142)( 9,139)( 10,140)
( 11,145)( 12,146)( 13,143)( 14,144)( 15,149)( 16,150)( 17,147)( 18,148)
( 19,153)( 20,154)( 21,151)( 22,152)( 23,157)( 24,158)( 25,155)( 26,156)
( 27,161)( 28,162)( 29,159)( 30,160)( 31,165)( 32,166)( 33,163)( 34,164)
( 35,169)( 36,170)( 37,167)( 38,168)( 39,173)( 40,174)( 41,171)( 42,172)
( 43,177)( 44,178)( 45,175)( 46,176)( 47,181)( 48,182)( 49,179)( 50,180)
( 51,185)( 52,186)( 53,183)( 54,184)( 55,189)( 56,190)( 57,187)( 58,188)
( 59,193)( 60,194)( 61,191)( 62,192)( 63,197)( 64,198)( 65,195)( 66,196)
( 67,201)( 68,202)( 69,199)( 70,200)( 71,205)( 72,206)( 73,203)( 74,204)
( 75,209)( 76,210)( 77,207)( 78,208)( 79,213)( 80,214)( 81,211)( 82,212)
( 83,217)( 84,218)( 85,215)( 86,216)( 87,221)( 88,222)( 89,219)( 90,220)
( 91,225)( 92,226)( 93,223)( 94,224)( 95,229)( 96,230)( 97,227)( 98,228)
( 99,233)(100,234)(101,231)(102,232)(103,237)(104,238)(105,235)(106,236)
(107,241)(108,242)(109,239)(110,240)(111,245)(112,246)(113,243)(114,244)
(115,249)(116,250)(117,247)(118,248)(119,253)(120,254)(121,251)(122,252)
(123,257)(124,258)(125,255)(126,256)(127,261)(128,262)(129,259)(130,260)
(131,265)(132,266)(133,263)(134,264);;
s2 := ( 4, 5)( 7, 43)( 8, 45)( 9, 44)( 10, 46)( 11, 39)( 12, 41)( 13, 40)
( 14, 42)( 15, 35)( 16, 37)( 17, 36)( 18, 38)( 19, 31)( 20, 33)( 21, 32)
( 22, 34)( 23, 27)( 24, 29)( 25, 28)( 26, 30)( 47, 91)( 48, 93)( 49, 92)
( 50, 94)( 51,131)( 52,133)( 53,132)( 54,134)( 55,127)( 56,129)( 57,128)
( 58,130)( 59,123)( 60,125)( 61,124)( 62,126)( 63,119)( 64,121)( 65,120)
( 66,122)( 67,115)( 68,117)( 69,116)( 70,118)( 71,111)( 72,113)( 73,112)
( 74,114)( 75,107)( 76,109)( 77,108)( 78,110)( 79,103)( 80,105)( 81,104)
( 82,106)( 83, 99)( 84,101)( 85,100)( 86,102)( 87, 95)( 88, 97)( 89, 96)
( 90, 98)(136,137)(139,175)(140,177)(141,176)(142,178)(143,171)(144,173)
(145,172)(146,174)(147,167)(148,169)(149,168)(150,170)(151,163)(152,165)
(153,164)(154,166)(155,159)(156,161)(157,160)(158,162)(179,223)(180,225)
(181,224)(182,226)(183,263)(184,265)(185,264)(186,266)(187,259)(188,261)
(189,260)(190,262)(191,255)(192,257)(193,256)(194,258)(195,251)(196,253)
(197,252)(198,254)(199,247)(200,249)(201,248)(202,250)(203,243)(204,245)
(205,244)(206,246)(207,239)(208,241)(209,240)(210,242)(211,235)(212,237)
(213,236)(214,238)(215,231)(216,233)(217,232)(218,234)(219,227)(220,229)
(221,228)(222,230);;
s3 := ( 3, 95)( 4, 98)( 5, 97)( 6, 96)( 7, 91)( 8, 94)( 9, 93)( 10, 92)
( 11,131)( 12,134)( 13,133)( 14,132)( 15,127)( 16,130)( 17,129)( 18,128)
( 19,123)( 20,126)( 21,125)( 22,124)( 23,119)( 24,122)( 25,121)( 26,120)
( 27,115)( 28,118)( 29,117)( 30,116)( 31,111)( 32,114)( 33,113)( 34,112)
( 35,107)( 36,110)( 37,109)( 38,108)( 39,103)( 40,106)( 41,105)( 42,104)
( 43, 99)( 44,102)( 45,101)( 46,100)( 47, 51)( 48, 54)( 49, 53)( 50, 52)
( 55, 87)( 56, 90)( 57, 89)( 58, 88)( 59, 83)( 60, 86)( 61, 85)( 62, 84)
( 63, 79)( 64, 82)( 65, 81)( 66, 80)( 67, 75)( 68, 78)( 69, 77)( 70, 76)
( 72, 74)(135,227)(136,230)(137,229)(138,228)(139,223)(140,226)(141,225)
(142,224)(143,263)(144,266)(145,265)(146,264)(147,259)(148,262)(149,261)
(150,260)(151,255)(152,258)(153,257)(154,256)(155,251)(156,254)(157,253)
(158,252)(159,247)(160,250)(161,249)(162,248)(163,243)(164,246)(165,245)
(166,244)(167,239)(168,242)(169,241)(170,240)(171,235)(172,238)(173,237)
(174,236)(175,231)(176,234)(177,233)(178,232)(179,183)(180,186)(181,185)
(182,184)(187,219)(188,222)(189,221)(190,220)(191,215)(192,218)(193,217)
(194,216)(195,211)(196,214)(197,213)(198,212)(199,207)(200,210)(201,209)
(202,208)(204,206);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(266)!(1,2);
s1 := Sym(266)!( 3,137)( 4,138)( 5,135)( 6,136)( 7,141)( 8,142)( 9,139)
( 10,140)( 11,145)( 12,146)( 13,143)( 14,144)( 15,149)( 16,150)( 17,147)
( 18,148)( 19,153)( 20,154)( 21,151)( 22,152)( 23,157)( 24,158)( 25,155)
( 26,156)( 27,161)( 28,162)( 29,159)( 30,160)( 31,165)( 32,166)( 33,163)
( 34,164)( 35,169)( 36,170)( 37,167)( 38,168)( 39,173)( 40,174)( 41,171)
( 42,172)( 43,177)( 44,178)( 45,175)( 46,176)( 47,181)( 48,182)( 49,179)
( 50,180)( 51,185)( 52,186)( 53,183)( 54,184)( 55,189)( 56,190)( 57,187)
( 58,188)( 59,193)( 60,194)( 61,191)( 62,192)( 63,197)( 64,198)( 65,195)
( 66,196)( 67,201)( 68,202)( 69,199)( 70,200)( 71,205)( 72,206)( 73,203)
( 74,204)( 75,209)( 76,210)( 77,207)( 78,208)( 79,213)( 80,214)( 81,211)
( 82,212)( 83,217)( 84,218)( 85,215)( 86,216)( 87,221)( 88,222)( 89,219)
( 90,220)( 91,225)( 92,226)( 93,223)( 94,224)( 95,229)( 96,230)( 97,227)
( 98,228)( 99,233)(100,234)(101,231)(102,232)(103,237)(104,238)(105,235)
(106,236)(107,241)(108,242)(109,239)(110,240)(111,245)(112,246)(113,243)
(114,244)(115,249)(116,250)(117,247)(118,248)(119,253)(120,254)(121,251)
(122,252)(123,257)(124,258)(125,255)(126,256)(127,261)(128,262)(129,259)
(130,260)(131,265)(132,266)(133,263)(134,264);
s2 := Sym(266)!( 4, 5)( 7, 43)( 8, 45)( 9, 44)( 10, 46)( 11, 39)( 12, 41)
( 13, 40)( 14, 42)( 15, 35)( 16, 37)( 17, 36)( 18, 38)( 19, 31)( 20, 33)
( 21, 32)( 22, 34)( 23, 27)( 24, 29)( 25, 28)( 26, 30)( 47, 91)( 48, 93)
( 49, 92)( 50, 94)( 51,131)( 52,133)( 53,132)( 54,134)( 55,127)( 56,129)
( 57,128)( 58,130)( 59,123)( 60,125)( 61,124)( 62,126)( 63,119)( 64,121)
( 65,120)( 66,122)( 67,115)( 68,117)( 69,116)( 70,118)( 71,111)( 72,113)
( 73,112)( 74,114)( 75,107)( 76,109)( 77,108)( 78,110)( 79,103)( 80,105)
( 81,104)( 82,106)( 83, 99)( 84,101)( 85,100)( 86,102)( 87, 95)( 88, 97)
( 89, 96)( 90, 98)(136,137)(139,175)(140,177)(141,176)(142,178)(143,171)
(144,173)(145,172)(146,174)(147,167)(148,169)(149,168)(150,170)(151,163)
(152,165)(153,164)(154,166)(155,159)(156,161)(157,160)(158,162)(179,223)
(180,225)(181,224)(182,226)(183,263)(184,265)(185,264)(186,266)(187,259)
(188,261)(189,260)(190,262)(191,255)(192,257)(193,256)(194,258)(195,251)
(196,253)(197,252)(198,254)(199,247)(200,249)(201,248)(202,250)(203,243)
(204,245)(205,244)(206,246)(207,239)(208,241)(209,240)(210,242)(211,235)
(212,237)(213,236)(214,238)(215,231)(216,233)(217,232)(218,234)(219,227)
(220,229)(221,228)(222,230);
s3 := Sym(266)!( 3, 95)( 4, 98)( 5, 97)( 6, 96)( 7, 91)( 8, 94)( 9, 93)
( 10, 92)( 11,131)( 12,134)( 13,133)( 14,132)( 15,127)( 16,130)( 17,129)
( 18,128)( 19,123)( 20,126)( 21,125)( 22,124)( 23,119)( 24,122)( 25,121)
( 26,120)( 27,115)( 28,118)( 29,117)( 30,116)( 31,111)( 32,114)( 33,113)
( 34,112)( 35,107)( 36,110)( 37,109)( 38,108)( 39,103)( 40,106)( 41,105)
( 42,104)( 43, 99)( 44,102)( 45,101)( 46,100)( 47, 51)( 48, 54)( 49, 53)
( 50, 52)( 55, 87)( 56, 90)( 57, 89)( 58, 88)( 59, 83)( 60, 86)( 61, 85)
( 62, 84)( 63, 79)( 64, 82)( 65, 81)( 66, 80)( 67, 75)( 68, 78)( 69, 77)
( 70, 76)( 72, 74)(135,227)(136,230)(137,229)(138,228)(139,223)(140,226)
(141,225)(142,224)(143,263)(144,266)(145,265)(146,264)(147,259)(148,262)
(149,261)(150,260)(151,255)(152,258)(153,257)(154,256)(155,251)(156,254)
(157,253)(158,252)(159,247)(160,250)(161,249)(162,248)(163,243)(164,246)
(165,245)(166,244)(167,239)(168,242)(169,241)(170,240)(171,235)(172,238)
(173,237)(174,236)(175,231)(176,234)(177,233)(178,232)(179,183)(180,186)
(181,185)(182,184)(187,219)(188,222)(189,221)(190,220)(191,215)(192,218)
(193,217)(194,216)(195,211)(196,214)(197,213)(198,212)(199,207)(200,210)
(201,209)(202,208)(204,206);
poly := sub<Sym(266)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope