include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,66}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,66}*1056b
if this polytope has a name.
Group : SmallGroup(1056,1017)
Rank : 4
Schlafli Type : {2,4,66}
Number of vertices, edges, etc : 2, 4, 132, 66
Order of s0s1s2s3 : 66
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,33}*528
11-fold quotients : {2,4,6}*96c
22-fold quotients : {2,4,3}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 5)( 4, 6)( 7, 9)( 8, 10)( 11, 13)( 12, 14)( 15, 17)( 16, 18)
( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)( 32, 34)
( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)( 48, 50)
( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)( 64, 66)
( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)( 80, 82)
( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)( 96, 98)
( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)(112,114)
(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)(128,130)
(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)(144,146)
(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)(160,162)
(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)(176,178)
(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)(192,194)
(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)(208,210)
(211,213)(212,214)(215,217)(216,218)(219,221)(220,222)(223,225)(224,226)
(227,229)(228,230)(231,233)(232,234)(235,237)(236,238)(239,241)(240,242)
(243,245)(244,246)(247,249)(248,250)(251,253)(252,254)(255,257)(256,258)
(259,261)(260,262)(263,265)(264,266);;
s2 := ( 4, 5)( 7, 43)( 8, 45)( 9, 44)( 10, 46)( 11, 39)( 12, 41)( 13, 40)
( 14, 42)( 15, 35)( 16, 37)( 17, 36)( 18, 38)( 19, 31)( 20, 33)( 21, 32)
( 22, 34)( 23, 27)( 24, 29)( 25, 28)( 26, 30)( 47, 91)( 48, 93)( 49, 92)
( 50, 94)( 51,131)( 52,133)( 53,132)( 54,134)( 55,127)( 56,129)( 57,128)
( 58,130)( 59,123)( 60,125)( 61,124)( 62,126)( 63,119)( 64,121)( 65,120)
( 66,122)( 67,115)( 68,117)( 69,116)( 70,118)( 71,111)( 72,113)( 73,112)
( 74,114)( 75,107)( 76,109)( 77,108)( 78,110)( 79,103)( 80,105)( 81,104)
( 82,106)( 83, 99)( 84,101)( 85,100)( 86,102)( 87, 95)( 88, 97)( 89, 96)
( 90, 98)(136,137)(139,175)(140,177)(141,176)(142,178)(143,171)(144,173)
(145,172)(146,174)(147,167)(148,169)(149,168)(150,170)(151,163)(152,165)
(153,164)(154,166)(155,159)(156,161)(157,160)(158,162)(179,223)(180,225)
(181,224)(182,226)(183,263)(184,265)(185,264)(186,266)(187,259)(188,261)
(189,260)(190,262)(191,255)(192,257)(193,256)(194,258)(195,251)(196,253)
(197,252)(198,254)(199,247)(200,249)(201,248)(202,250)(203,243)(204,245)
(205,244)(206,246)(207,239)(208,241)(209,240)(210,242)(211,235)(212,237)
(213,236)(214,238)(215,231)(216,233)(217,232)(218,234)(219,227)(220,229)
(221,228)(222,230);;
s3 := ( 3,227)( 4,230)( 5,229)( 6,228)( 7,223)( 8,226)( 9,225)( 10,224)
( 11,263)( 12,266)( 13,265)( 14,264)( 15,259)( 16,262)( 17,261)( 18,260)
( 19,255)( 20,258)( 21,257)( 22,256)( 23,251)( 24,254)( 25,253)( 26,252)
( 27,247)( 28,250)( 29,249)( 30,248)( 31,243)( 32,246)( 33,245)( 34,244)
( 35,239)( 36,242)( 37,241)( 38,240)( 39,235)( 40,238)( 41,237)( 42,236)
( 43,231)( 44,234)( 45,233)( 46,232)( 47,183)( 48,186)( 49,185)( 50,184)
( 51,179)( 52,182)( 53,181)( 54,180)( 55,219)( 56,222)( 57,221)( 58,220)
( 59,215)( 60,218)( 61,217)( 62,216)( 63,211)( 64,214)( 65,213)( 66,212)
( 67,207)( 68,210)( 69,209)( 70,208)( 71,203)( 72,206)( 73,205)( 74,204)
( 75,199)( 76,202)( 77,201)( 78,200)( 79,195)( 80,198)( 81,197)( 82,196)
( 83,191)( 84,194)( 85,193)( 86,192)( 87,187)( 88,190)( 89,189)( 90,188)
( 91,139)( 92,142)( 93,141)( 94,140)( 95,135)( 96,138)( 97,137)( 98,136)
( 99,175)(100,178)(101,177)(102,176)(103,171)(104,174)(105,173)(106,172)
(107,167)(108,170)(109,169)(110,168)(111,163)(112,166)(113,165)(114,164)
(115,159)(116,162)(117,161)(118,160)(119,155)(120,158)(121,157)(122,156)
(123,151)(124,154)(125,153)(126,152)(127,147)(128,150)(129,149)(130,148)
(131,143)(132,146)(133,145)(134,144);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(266)!(1,2);
s1 := Sym(266)!( 3, 5)( 4, 6)( 7, 9)( 8, 10)( 11, 13)( 12, 14)( 15, 17)
( 16, 18)( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)
( 32, 34)( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)
( 48, 50)( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)
( 64, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)
( 80, 82)( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)
( 96, 98)( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)
(112,114)(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)
(128,130)(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)
(144,146)(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)
(160,162)(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)
(176,178)(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)
(192,194)(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)
(208,210)(211,213)(212,214)(215,217)(216,218)(219,221)(220,222)(223,225)
(224,226)(227,229)(228,230)(231,233)(232,234)(235,237)(236,238)(239,241)
(240,242)(243,245)(244,246)(247,249)(248,250)(251,253)(252,254)(255,257)
(256,258)(259,261)(260,262)(263,265)(264,266);
s2 := Sym(266)!( 4, 5)( 7, 43)( 8, 45)( 9, 44)( 10, 46)( 11, 39)( 12, 41)
( 13, 40)( 14, 42)( 15, 35)( 16, 37)( 17, 36)( 18, 38)( 19, 31)( 20, 33)
( 21, 32)( 22, 34)( 23, 27)( 24, 29)( 25, 28)( 26, 30)( 47, 91)( 48, 93)
( 49, 92)( 50, 94)( 51,131)( 52,133)( 53,132)( 54,134)( 55,127)( 56,129)
( 57,128)( 58,130)( 59,123)( 60,125)( 61,124)( 62,126)( 63,119)( 64,121)
( 65,120)( 66,122)( 67,115)( 68,117)( 69,116)( 70,118)( 71,111)( 72,113)
( 73,112)( 74,114)( 75,107)( 76,109)( 77,108)( 78,110)( 79,103)( 80,105)
( 81,104)( 82,106)( 83, 99)( 84,101)( 85,100)( 86,102)( 87, 95)( 88, 97)
( 89, 96)( 90, 98)(136,137)(139,175)(140,177)(141,176)(142,178)(143,171)
(144,173)(145,172)(146,174)(147,167)(148,169)(149,168)(150,170)(151,163)
(152,165)(153,164)(154,166)(155,159)(156,161)(157,160)(158,162)(179,223)
(180,225)(181,224)(182,226)(183,263)(184,265)(185,264)(186,266)(187,259)
(188,261)(189,260)(190,262)(191,255)(192,257)(193,256)(194,258)(195,251)
(196,253)(197,252)(198,254)(199,247)(200,249)(201,248)(202,250)(203,243)
(204,245)(205,244)(206,246)(207,239)(208,241)(209,240)(210,242)(211,235)
(212,237)(213,236)(214,238)(215,231)(216,233)(217,232)(218,234)(219,227)
(220,229)(221,228)(222,230);
s3 := Sym(266)!( 3,227)( 4,230)( 5,229)( 6,228)( 7,223)( 8,226)( 9,225)
( 10,224)( 11,263)( 12,266)( 13,265)( 14,264)( 15,259)( 16,262)( 17,261)
( 18,260)( 19,255)( 20,258)( 21,257)( 22,256)( 23,251)( 24,254)( 25,253)
( 26,252)( 27,247)( 28,250)( 29,249)( 30,248)( 31,243)( 32,246)( 33,245)
( 34,244)( 35,239)( 36,242)( 37,241)( 38,240)( 39,235)( 40,238)( 41,237)
( 42,236)( 43,231)( 44,234)( 45,233)( 46,232)( 47,183)( 48,186)( 49,185)
( 50,184)( 51,179)( 52,182)( 53,181)( 54,180)( 55,219)( 56,222)( 57,221)
( 58,220)( 59,215)( 60,218)( 61,217)( 62,216)( 63,211)( 64,214)( 65,213)
( 66,212)( 67,207)( 68,210)( 69,209)( 70,208)( 71,203)( 72,206)( 73,205)
( 74,204)( 75,199)( 76,202)( 77,201)( 78,200)( 79,195)( 80,198)( 81,197)
( 82,196)( 83,191)( 84,194)( 85,193)( 86,192)( 87,187)( 88,190)( 89,189)
( 90,188)( 91,139)( 92,142)( 93,141)( 94,140)( 95,135)( 96,138)( 97,137)
( 98,136)( 99,175)(100,178)(101,177)(102,176)(103,171)(104,174)(105,173)
(106,172)(107,167)(108,170)(109,169)(110,168)(111,163)(112,166)(113,165)
(114,164)(115,159)(116,162)(117,161)(118,160)(119,155)(120,158)(121,157)
(122,156)(123,151)(124,154)(125,153)(126,152)(127,147)(128,150)(129,149)
(130,148)(131,143)(132,146)(133,145)(134,144);
poly := sub<Sym(266)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope