include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {11,2,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {11,2,24}*1056
if this polytope has a name.
Group : SmallGroup(1056,235)
Rank : 4
Schlafli Type : {11,2,24}
Number of vertices, edges, etc : 11, 11, 24, 24
Order of s0s1s2s3 : 264
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {11,2,12}*528
3-fold quotients : {11,2,8}*352
4-fold quotients : {11,2,6}*264
6-fold quotients : {11,2,4}*176
8-fold quotients : {11,2,3}*132
12-fold quotients : {11,2,2}*88
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s2 := (13,14)(15,16)(17,20)(18,22)(19,21)(23,26)(24,28)(25,27)(30,33)(31,32)
(34,35);;
s3 := (12,18)(13,15)(14,24)(16,19)(17,21)(20,30)(22,25)(23,27)(26,34)(28,31)
(29,32)(33,35);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(35)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11);
s1 := Sym(35)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10);
s2 := Sym(35)!(13,14)(15,16)(17,20)(18,22)(19,21)(23,26)(24,28)(25,27)(30,33)
(31,32)(34,35);
s3 := Sym(35)!(12,18)(13,15)(14,24)(16,19)(17,21)(20,30)(22,25)(23,27)(26,34)
(28,31)(29,32)(33,35);
poly := sub<Sym(35)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope