Polytope of Type {4,132}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,132}*1056b
if this polytope has a name.
Group : SmallGroup(1056,882)
Rank : 3
Schlafli Type : {4,132}
Number of vertices, edges, etc : 4, 264, 132
Order of s0s1s2 : 132
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,66}*528b
   4-fold quotients : {4,33}*264
   11-fold quotients : {4,12}*96b
   22-fold quotients : {4,6}*48c
   44-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192)
(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)(206,208)
(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)(222,224)
(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)(238,240)
(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)(254,256)
(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)(270,272)
(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)(286,288)
(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)(302,304)
(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)(318,320)
(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)(334,336)
(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)(350,352)
(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)(366,368)
(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)(382,384)
(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)(398,400)
(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)(414,416)
(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)(430,432)
(433,435)(434,436)(437,439)(438,440)(441,443)(442,444)(445,447)(446,448)
(449,451)(450,452)(453,455)(454,456)(457,459)(458,460)(461,463)(462,464)
(465,467)(466,468)(469,471)(470,472)(473,475)(474,476)(477,479)(478,480)
(481,483)(482,484)(485,487)(486,488)(489,491)(490,492)(493,495)(494,496)
(497,499)(498,500)(501,503)(502,504)(505,507)(506,508)(509,511)(510,512)
(513,515)(514,516)(517,519)(518,520)(521,523)(522,524)(525,527)(526,528);;
s1 := (  3,  4)(  5, 41)(  6, 42)(  7, 44)(  8, 43)(  9, 37)( 10, 38)( 11, 40)
( 12, 39)( 13, 33)( 14, 34)( 15, 36)( 16, 35)( 17, 29)( 18, 30)( 19, 32)
( 20, 31)( 21, 25)( 22, 26)( 23, 28)( 24, 27)( 45, 89)( 46, 90)( 47, 92)
( 48, 91)( 49,129)( 50,130)( 51,132)( 52,131)( 53,125)( 54,126)( 55,128)
( 56,127)( 57,121)( 58,122)( 59,124)( 60,123)( 61,117)( 62,118)( 63,120)
( 64,119)( 65,113)( 66,114)( 67,116)( 68,115)( 69,109)( 70,110)( 71,112)
( 72,111)( 73,105)( 74,106)( 75,108)( 76,107)( 77,101)( 78,102)( 79,104)
( 80,103)( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85, 93)( 86, 94)( 87, 96)
( 88, 95)(135,136)(137,173)(138,174)(139,176)(140,175)(141,169)(142,170)
(143,172)(144,171)(145,165)(146,166)(147,168)(148,167)(149,161)(150,162)
(151,164)(152,163)(153,157)(154,158)(155,160)(156,159)(177,221)(178,222)
(179,224)(180,223)(181,261)(182,262)(183,264)(184,263)(185,257)(186,258)
(187,260)(188,259)(189,253)(190,254)(191,256)(192,255)(193,249)(194,250)
(195,252)(196,251)(197,245)(198,246)(199,248)(200,247)(201,241)(202,242)
(203,244)(204,243)(205,237)(206,238)(207,240)(208,239)(209,233)(210,234)
(211,236)(212,235)(213,229)(214,230)(215,232)(216,231)(217,225)(218,226)
(219,228)(220,227)(265,397)(266,398)(267,400)(268,399)(269,437)(270,438)
(271,440)(272,439)(273,433)(274,434)(275,436)(276,435)(277,429)(278,430)
(279,432)(280,431)(281,425)(282,426)(283,428)(284,427)(285,421)(286,422)
(287,424)(288,423)(289,417)(290,418)(291,420)(292,419)(293,413)(294,414)
(295,416)(296,415)(297,409)(298,410)(299,412)(300,411)(301,405)(302,406)
(303,408)(304,407)(305,401)(306,402)(307,404)(308,403)(309,485)(310,486)
(311,488)(312,487)(313,525)(314,526)(315,528)(316,527)(317,521)(318,522)
(319,524)(320,523)(321,517)(322,518)(323,520)(324,519)(325,513)(326,514)
(327,516)(328,515)(329,509)(330,510)(331,512)(332,511)(333,505)(334,506)
(335,508)(336,507)(337,501)(338,502)(339,504)(340,503)(341,497)(342,498)
(343,500)(344,499)(345,493)(346,494)(347,496)(348,495)(349,489)(350,490)
(351,492)(352,491)(353,441)(354,442)(355,444)(356,443)(357,481)(358,482)
(359,484)(360,483)(361,477)(362,478)(363,480)(364,479)(365,473)(366,474)
(367,476)(368,475)(369,469)(370,470)(371,472)(372,471)(373,465)(374,466)
(375,468)(376,467)(377,461)(378,462)(379,464)(380,463)(381,457)(382,458)
(383,460)(384,459)(385,453)(386,454)(387,456)(388,455)(389,449)(390,450)
(391,452)(392,451)(393,445)(394,446)(395,448)(396,447);;
s2 := (  1,313)(  2,316)(  3,315)(  4,314)(  5,309)(  6,312)(  7,311)(  8,310)
(  9,349)( 10,352)( 11,351)( 12,350)( 13,345)( 14,348)( 15,347)( 16,346)
( 17,341)( 18,344)( 19,343)( 20,342)( 21,337)( 22,340)( 23,339)( 24,338)
( 25,333)( 26,336)( 27,335)( 28,334)( 29,329)( 30,332)( 31,331)( 32,330)
( 33,325)( 34,328)( 35,327)( 36,326)( 37,321)( 38,324)( 39,323)( 40,322)
( 41,317)( 42,320)( 43,319)( 44,318)( 45,269)( 46,272)( 47,271)( 48,270)
( 49,265)( 50,268)( 51,267)( 52,266)( 53,305)( 54,308)( 55,307)( 56,306)
( 57,301)( 58,304)( 59,303)( 60,302)( 61,297)( 62,300)( 63,299)( 64,298)
( 65,293)( 66,296)( 67,295)( 68,294)( 69,289)( 70,292)( 71,291)( 72,290)
( 73,285)( 74,288)( 75,287)( 76,286)( 77,281)( 78,284)( 79,283)( 80,282)
( 81,277)( 82,280)( 83,279)( 84,278)( 85,273)( 86,276)( 87,275)( 88,274)
( 89,357)( 90,360)( 91,359)( 92,358)( 93,353)( 94,356)( 95,355)( 96,354)
( 97,393)( 98,396)( 99,395)(100,394)(101,389)(102,392)(103,391)(104,390)
(105,385)(106,388)(107,387)(108,386)(109,381)(110,384)(111,383)(112,382)
(113,377)(114,380)(115,379)(116,378)(117,373)(118,376)(119,375)(120,374)
(121,369)(122,372)(123,371)(124,370)(125,365)(126,368)(127,367)(128,366)
(129,361)(130,364)(131,363)(132,362)(133,445)(134,448)(135,447)(136,446)
(137,441)(138,444)(139,443)(140,442)(141,481)(142,484)(143,483)(144,482)
(145,477)(146,480)(147,479)(148,478)(149,473)(150,476)(151,475)(152,474)
(153,469)(154,472)(155,471)(156,470)(157,465)(158,468)(159,467)(160,466)
(161,461)(162,464)(163,463)(164,462)(165,457)(166,460)(167,459)(168,458)
(169,453)(170,456)(171,455)(172,454)(173,449)(174,452)(175,451)(176,450)
(177,401)(178,404)(179,403)(180,402)(181,397)(182,400)(183,399)(184,398)
(185,437)(186,440)(187,439)(188,438)(189,433)(190,436)(191,435)(192,434)
(193,429)(194,432)(195,431)(196,430)(197,425)(198,428)(199,427)(200,426)
(201,421)(202,424)(203,423)(204,422)(205,417)(206,420)(207,419)(208,418)
(209,413)(210,416)(211,415)(212,414)(213,409)(214,412)(215,411)(216,410)
(217,405)(218,408)(219,407)(220,406)(221,489)(222,492)(223,491)(224,490)
(225,485)(226,488)(227,487)(228,486)(229,525)(230,528)(231,527)(232,526)
(233,521)(234,524)(235,523)(236,522)(237,517)(238,520)(239,519)(240,518)
(241,513)(242,516)(243,515)(244,514)(245,509)(246,512)(247,511)(248,510)
(249,505)(250,508)(251,507)(252,506)(253,501)(254,504)(255,503)(256,502)
(257,497)(258,500)(259,499)(260,498)(261,493)(262,496)(263,495)(264,494);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(528)!(  1,  3)(  2,  4)(  5,  7)(  6,  8)(  9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192)(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)
(206,208)(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)
(222,224)(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)
(238,240)(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)
(254,256)(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)
(270,272)(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)
(286,288)(289,291)(290,292)(293,295)(294,296)(297,299)(298,300)(301,303)
(302,304)(305,307)(306,308)(309,311)(310,312)(313,315)(314,316)(317,319)
(318,320)(321,323)(322,324)(325,327)(326,328)(329,331)(330,332)(333,335)
(334,336)(337,339)(338,340)(341,343)(342,344)(345,347)(346,348)(349,351)
(350,352)(353,355)(354,356)(357,359)(358,360)(361,363)(362,364)(365,367)
(366,368)(369,371)(370,372)(373,375)(374,376)(377,379)(378,380)(381,383)
(382,384)(385,387)(386,388)(389,391)(390,392)(393,395)(394,396)(397,399)
(398,400)(401,403)(402,404)(405,407)(406,408)(409,411)(410,412)(413,415)
(414,416)(417,419)(418,420)(421,423)(422,424)(425,427)(426,428)(429,431)
(430,432)(433,435)(434,436)(437,439)(438,440)(441,443)(442,444)(445,447)
(446,448)(449,451)(450,452)(453,455)(454,456)(457,459)(458,460)(461,463)
(462,464)(465,467)(466,468)(469,471)(470,472)(473,475)(474,476)(477,479)
(478,480)(481,483)(482,484)(485,487)(486,488)(489,491)(490,492)(493,495)
(494,496)(497,499)(498,500)(501,503)(502,504)(505,507)(506,508)(509,511)
(510,512)(513,515)(514,516)(517,519)(518,520)(521,523)(522,524)(525,527)
(526,528);
s1 := Sym(528)!(  3,  4)(  5, 41)(  6, 42)(  7, 44)(  8, 43)(  9, 37)( 10, 38)
( 11, 40)( 12, 39)( 13, 33)( 14, 34)( 15, 36)( 16, 35)( 17, 29)( 18, 30)
( 19, 32)( 20, 31)( 21, 25)( 22, 26)( 23, 28)( 24, 27)( 45, 89)( 46, 90)
( 47, 92)( 48, 91)( 49,129)( 50,130)( 51,132)( 52,131)( 53,125)( 54,126)
( 55,128)( 56,127)( 57,121)( 58,122)( 59,124)( 60,123)( 61,117)( 62,118)
( 63,120)( 64,119)( 65,113)( 66,114)( 67,116)( 68,115)( 69,109)( 70,110)
( 71,112)( 72,111)( 73,105)( 74,106)( 75,108)( 76,107)( 77,101)( 78,102)
( 79,104)( 80,103)( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85, 93)( 86, 94)
( 87, 96)( 88, 95)(135,136)(137,173)(138,174)(139,176)(140,175)(141,169)
(142,170)(143,172)(144,171)(145,165)(146,166)(147,168)(148,167)(149,161)
(150,162)(151,164)(152,163)(153,157)(154,158)(155,160)(156,159)(177,221)
(178,222)(179,224)(180,223)(181,261)(182,262)(183,264)(184,263)(185,257)
(186,258)(187,260)(188,259)(189,253)(190,254)(191,256)(192,255)(193,249)
(194,250)(195,252)(196,251)(197,245)(198,246)(199,248)(200,247)(201,241)
(202,242)(203,244)(204,243)(205,237)(206,238)(207,240)(208,239)(209,233)
(210,234)(211,236)(212,235)(213,229)(214,230)(215,232)(216,231)(217,225)
(218,226)(219,228)(220,227)(265,397)(266,398)(267,400)(268,399)(269,437)
(270,438)(271,440)(272,439)(273,433)(274,434)(275,436)(276,435)(277,429)
(278,430)(279,432)(280,431)(281,425)(282,426)(283,428)(284,427)(285,421)
(286,422)(287,424)(288,423)(289,417)(290,418)(291,420)(292,419)(293,413)
(294,414)(295,416)(296,415)(297,409)(298,410)(299,412)(300,411)(301,405)
(302,406)(303,408)(304,407)(305,401)(306,402)(307,404)(308,403)(309,485)
(310,486)(311,488)(312,487)(313,525)(314,526)(315,528)(316,527)(317,521)
(318,522)(319,524)(320,523)(321,517)(322,518)(323,520)(324,519)(325,513)
(326,514)(327,516)(328,515)(329,509)(330,510)(331,512)(332,511)(333,505)
(334,506)(335,508)(336,507)(337,501)(338,502)(339,504)(340,503)(341,497)
(342,498)(343,500)(344,499)(345,493)(346,494)(347,496)(348,495)(349,489)
(350,490)(351,492)(352,491)(353,441)(354,442)(355,444)(356,443)(357,481)
(358,482)(359,484)(360,483)(361,477)(362,478)(363,480)(364,479)(365,473)
(366,474)(367,476)(368,475)(369,469)(370,470)(371,472)(372,471)(373,465)
(374,466)(375,468)(376,467)(377,461)(378,462)(379,464)(380,463)(381,457)
(382,458)(383,460)(384,459)(385,453)(386,454)(387,456)(388,455)(389,449)
(390,450)(391,452)(392,451)(393,445)(394,446)(395,448)(396,447);
s2 := Sym(528)!(  1,313)(  2,316)(  3,315)(  4,314)(  5,309)(  6,312)(  7,311)
(  8,310)(  9,349)( 10,352)( 11,351)( 12,350)( 13,345)( 14,348)( 15,347)
( 16,346)( 17,341)( 18,344)( 19,343)( 20,342)( 21,337)( 22,340)( 23,339)
( 24,338)( 25,333)( 26,336)( 27,335)( 28,334)( 29,329)( 30,332)( 31,331)
( 32,330)( 33,325)( 34,328)( 35,327)( 36,326)( 37,321)( 38,324)( 39,323)
( 40,322)( 41,317)( 42,320)( 43,319)( 44,318)( 45,269)( 46,272)( 47,271)
( 48,270)( 49,265)( 50,268)( 51,267)( 52,266)( 53,305)( 54,308)( 55,307)
( 56,306)( 57,301)( 58,304)( 59,303)( 60,302)( 61,297)( 62,300)( 63,299)
( 64,298)( 65,293)( 66,296)( 67,295)( 68,294)( 69,289)( 70,292)( 71,291)
( 72,290)( 73,285)( 74,288)( 75,287)( 76,286)( 77,281)( 78,284)( 79,283)
( 80,282)( 81,277)( 82,280)( 83,279)( 84,278)( 85,273)( 86,276)( 87,275)
( 88,274)( 89,357)( 90,360)( 91,359)( 92,358)( 93,353)( 94,356)( 95,355)
( 96,354)( 97,393)( 98,396)( 99,395)(100,394)(101,389)(102,392)(103,391)
(104,390)(105,385)(106,388)(107,387)(108,386)(109,381)(110,384)(111,383)
(112,382)(113,377)(114,380)(115,379)(116,378)(117,373)(118,376)(119,375)
(120,374)(121,369)(122,372)(123,371)(124,370)(125,365)(126,368)(127,367)
(128,366)(129,361)(130,364)(131,363)(132,362)(133,445)(134,448)(135,447)
(136,446)(137,441)(138,444)(139,443)(140,442)(141,481)(142,484)(143,483)
(144,482)(145,477)(146,480)(147,479)(148,478)(149,473)(150,476)(151,475)
(152,474)(153,469)(154,472)(155,471)(156,470)(157,465)(158,468)(159,467)
(160,466)(161,461)(162,464)(163,463)(164,462)(165,457)(166,460)(167,459)
(168,458)(169,453)(170,456)(171,455)(172,454)(173,449)(174,452)(175,451)
(176,450)(177,401)(178,404)(179,403)(180,402)(181,397)(182,400)(183,399)
(184,398)(185,437)(186,440)(187,439)(188,438)(189,433)(190,436)(191,435)
(192,434)(193,429)(194,432)(195,431)(196,430)(197,425)(198,428)(199,427)
(200,426)(201,421)(202,424)(203,423)(204,422)(205,417)(206,420)(207,419)
(208,418)(209,413)(210,416)(211,415)(212,414)(213,409)(214,412)(215,411)
(216,410)(217,405)(218,408)(219,407)(220,406)(221,489)(222,492)(223,491)
(224,490)(225,485)(226,488)(227,487)(228,486)(229,525)(230,528)(231,527)
(232,526)(233,521)(234,524)(235,523)(236,522)(237,517)(238,520)(239,519)
(240,518)(241,513)(242,516)(243,515)(244,514)(245,509)(246,512)(247,511)
(248,510)(249,505)(250,508)(251,507)(252,506)(253,501)(254,504)(255,503)
(256,502)(257,497)(258,500)(259,499)(260,498)(261,493)(262,496)(263,495)
(264,494);
poly := sub<Sym(528)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope