include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,132}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,132}*1056c
if this polytope has a name.
Group : SmallGroup(1056,882)
Rank : 3
Schlafli Type : {4,132}
Number of vertices, edges, etc : 4, 264, 132
Order of s0s1s2 : 132
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,66}*528b
4-fold quotients : {4,33}*264
11-fold quotients : {4,12}*96c
22-fold quotients : {4,6}*48c
44-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,135)( 2,136)( 3,133)( 4,134)( 5,139)( 6,140)( 7,137)( 8,138)
( 9,143)( 10,144)( 11,141)( 12,142)( 13,147)( 14,148)( 15,145)( 16,146)
( 17,151)( 18,152)( 19,149)( 20,150)( 21,155)( 22,156)( 23,153)( 24,154)
( 25,159)( 26,160)( 27,157)( 28,158)( 29,163)( 30,164)( 31,161)( 32,162)
( 33,167)( 34,168)( 35,165)( 36,166)( 37,171)( 38,172)( 39,169)( 40,170)
( 41,175)( 42,176)( 43,173)( 44,174)( 45,179)( 46,180)( 47,177)( 48,178)
( 49,183)( 50,184)( 51,181)( 52,182)( 53,187)( 54,188)( 55,185)( 56,186)
( 57,191)( 58,192)( 59,189)( 60,190)( 61,195)( 62,196)( 63,193)( 64,194)
( 65,199)( 66,200)( 67,197)( 68,198)( 69,203)( 70,204)( 71,201)( 72,202)
( 73,207)( 74,208)( 75,205)( 76,206)( 77,211)( 78,212)( 79,209)( 80,210)
( 81,215)( 82,216)( 83,213)( 84,214)( 85,219)( 86,220)( 87,217)( 88,218)
( 89,223)( 90,224)( 91,221)( 92,222)( 93,227)( 94,228)( 95,225)( 96,226)
( 97,231)( 98,232)( 99,229)(100,230)(101,235)(102,236)(103,233)(104,234)
(105,239)(106,240)(107,237)(108,238)(109,243)(110,244)(111,241)(112,242)
(113,247)(114,248)(115,245)(116,246)(117,251)(118,252)(119,249)(120,250)
(121,255)(122,256)(123,253)(124,254)(125,259)(126,260)(127,257)(128,258)
(129,263)(130,264)(131,261)(132,262)(265,399)(266,400)(267,397)(268,398)
(269,403)(270,404)(271,401)(272,402)(273,407)(274,408)(275,405)(276,406)
(277,411)(278,412)(279,409)(280,410)(281,415)(282,416)(283,413)(284,414)
(285,419)(286,420)(287,417)(288,418)(289,423)(290,424)(291,421)(292,422)
(293,427)(294,428)(295,425)(296,426)(297,431)(298,432)(299,429)(300,430)
(301,435)(302,436)(303,433)(304,434)(305,439)(306,440)(307,437)(308,438)
(309,443)(310,444)(311,441)(312,442)(313,447)(314,448)(315,445)(316,446)
(317,451)(318,452)(319,449)(320,450)(321,455)(322,456)(323,453)(324,454)
(325,459)(326,460)(327,457)(328,458)(329,463)(330,464)(331,461)(332,462)
(333,467)(334,468)(335,465)(336,466)(337,471)(338,472)(339,469)(340,470)
(341,475)(342,476)(343,473)(344,474)(345,479)(346,480)(347,477)(348,478)
(349,483)(350,484)(351,481)(352,482)(353,487)(354,488)(355,485)(356,486)
(357,491)(358,492)(359,489)(360,490)(361,495)(362,496)(363,493)(364,494)
(365,499)(366,500)(367,497)(368,498)(369,503)(370,504)(371,501)(372,502)
(373,507)(374,508)(375,505)(376,506)(377,511)(378,512)(379,509)(380,510)
(381,515)(382,516)(383,513)(384,514)(385,519)(386,520)(387,517)(388,518)
(389,523)(390,524)(391,521)(392,522)(393,527)(394,528)(395,525)(396,526);;
s1 := ( 3, 4)( 5, 41)( 6, 42)( 7, 44)( 8, 43)( 9, 37)( 10, 38)( 11, 40)
( 12, 39)( 13, 33)( 14, 34)( 15, 36)( 16, 35)( 17, 29)( 18, 30)( 19, 32)
( 20, 31)( 21, 25)( 22, 26)( 23, 28)( 24, 27)( 45, 89)( 46, 90)( 47, 92)
( 48, 91)( 49,129)( 50,130)( 51,132)( 52,131)( 53,125)( 54,126)( 55,128)
( 56,127)( 57,121)( 58,122)( 59,124)( 60,123)( 61,117)( 62,118)( 63,120)
( 64,119)( 65,113)( 66,114)( 67,116)( 68,115)( 69,109)( 70,110)( 71,112)
( 72,111)( 73,105)( 74,106)( 75,108)( 76,107)( 77,101)( 78,102)( 79,104)
( 80,103)( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85, 93)( 86, 94)( 87, 96)
( 88, 95)(135,136)(137,173)(138,174)(139,176)(140,175)(141,169)(142,170)
(143,172)(144,171)(145,165)(146,166)(147,168)(148,167)(149,161)(150,162)
(151,164)(152,163)(153,157)(154,158)(155,160)(156,159)(177,221)(178,222)
(179,224)(180,223)(181,261)(182,262)(183,264)(184,263)(185,257)(186,258)
(187,260)(188,259)(189,253)(190,254)(191,256)(192,255)(193,249)(194,250)
(195,252)(196,251)(197,245)(198,246)(199,248)(200,247)(201,241)(202,242)
(203,244)(204,243)(205,237)(206,238)(207,240)(208,239)(209,233)(210,234)
(211,236)(212,235)(213,229)(214,230)(215,232)(216,231)(217,225)(218,226)
(219,228)(220,227)(265,397)(266,398)(267,400)(268,399)(269,437)(270,438)
(271,440)(272,439)(273,433)(274,434)(275,436)(276,435)(277,429)(278,430)
(279,432)(280,431)(281,425)(282,426)(283,428)(284,427)(285,421)(286,422)
(287,424)(288,423)(289,417)(290,418)(291,420)(292,419)(293,413)(294,414)
(295,416)(296,415)(297,409)(298,410)(299,412)(300,411)(301,405)(302,406)
(303,408)(304,407)(305,401)(306,402)(307,404)(308,403)(309,485)(310,486)
(311,488)(312,487)(313,525)(314,526)(315,528)(316,527)(317,521)(318,522)
(319,524)(320,523)(321,517)(322,518)(323,520)(324,519)(325,513)(326,514)
(327,516)(328,515)(329,509)(330,510)(331,512)(332,511)(333,505)(334,506)
(335,508)(336,507)(337,501)(338,502)(339,504)(340,503)(341,497)(342,498)
(343,500)(344,499)(345,493)(346,494)(347,496)(348,495)(349,489)(350,490)
(351,492)(352,491)(353,441)(354,442)(355,444)(356,443)(357,481)(358,482)
(359,484)(360,483)(361,477)(362,478)(363,480)(364,479)(365,473)(366,474)
(367,476)(368,475)(369,469)(370,470)(371,472)(372,471)(373,465)(374,466)
(375,468)(376,467)(377,461)(378,462)(379,464)(380,463)(381,457)(382,458)
(383,460)(384,459)(385,453)(386,454)(387,456)(388,455)(389,449)(390,450)
(391,452)(392,451)(393,445)(394,446)(395,448)(396,447);;
s2 := ( 1,313)( 2,316)( 3,315)( 4,314)( 5,309)( 6,312)( 7,311)( 8,310)
( 9,349)( 10,352)( 11,351)( 12,350)( 13,345)( 14,348)( 15,347)( 16,346)
( 17,341)( 18,344)( 19,343)( 20,342)( 21,337)( 22,340)( 23,339)( 24,338)
( 25,333)( 26,336)( 27,335)( 28,334)( 29,329)( 30,332)( 31,331)( 32,330)
( 33,325)( 34,328)( 35,327)( 36,326)( 37,321)( 38,324)( 39,323)( 40,322)
( 41,317)( 42,320)( 43,319)( 44,318)( 45,269)( 46,272)( 47,271)( 48,270)
( 49,265)( 50,268)( 51,267)( 52,266)( 53,305)( 54,308)( 55,307)( 56,306)
( 57,301)( 58,304)( 59,303)( 60,302)( 61,297)( 62,300)( 63,299)( 64,298)
( 65,293)( 66,296)( 67,295)( 68,294)( 69,289)( 70,292)( 71,291)( 72,290)
( 73,285)( 74,288)( 75,287)( 76,286)( 77,281)( 78,284)( 79,283)( 80,282)
( 81,277)( 82,280)( 83,279)( 84,278)( 85,273)( 86,276)( 87,275)( 88,274)
( 89,357)( 90,360)( 91,359)( 92,358)( 93,353)( 94,356)( 95,355)( 96,354)
( 97,393)( 98,396)( 99,395)(100,394)(101,389)(102,392)(103,391)(104,390)
(105,385)(106,388)(107,387)(108,386)(109,381)(110,384)(111,383)(112,382)
(113,377)(114,380)(115,379)(116,378)(117,373)(118,376)(119,375)(120,374)
(121,369)(122,372)(123,371)(124,370)(125,365)(126,368)(127,367)(128,366)
(129,361)(130,364)(131,363)(132,362)(133,445)(134,448)(135,447)(136,446)
(137,441)(138,444)(139,443)(140,442)(141,481)(142,484)(143,483)(144,482)
(145,477)(146,480)(147,479)(148,478)(149,473)(150,476)(151,475)(152,474)
(153,469)(154,472)(155,471)(156,470)(157,465)(158,468)(159,467)(160,466)
(161,461)(162,464)(163,463)(164,462)(165,457)(166,460)(167,459)(168,458)
(169,453)(170,456)(171,455)(172,454)(173,449)(174,452)(175,451)(176,450)
(177,401)(178,404)(179,403)(180,402)(181,397)(182,400)(183,399)(184,398)
(185,437)(186,440)(187,439)(188,438)(189,433)(190,436)(191,435)(192,434)
(193,429)(194,432)(195,431)(196,430)(197,425)(198,428)(199,427)(200,426)
(201,421)(202,424)(203,423)(204,422)(205,417)(206,420)(207,419)(208,418)
(209,413)(210,416)(211,415)(212,414)(213,409)(214,412)(215,411)(216,410)
(217,405)(218,408)(219,407)(220,406)(221,489)(222,492)(223,491)(224,490)
(225,485)(226,488)(227,487)(228,486)(229,525)(230,528)(231,527)(232,526)
(233,521)(234,524)(235,523)(236,522)(237,517)(238,520)(239,519)(240,518)
(241,513)(242,516)(243,515)(244,514)(245,509)(246,512)(247,511)(248,510)
(249,505)(250,508)(251,507)(252,506)(253,501)(254,504)(255,503)(256,502)
(257,497)(258,500)(259,499)(260,498)(261,493)(262,496)(263,495)(264,494);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(528)!( 1,135)( 2,136)( 3,133)( 4,134)( 5,139)( 6,140)( 7,137)
( 8,138)( 9,143)( 10,144)( 11,141)( 12,142)( 13,147)( 14,148)( 15,145)
( 16,146)( 17,151)( 18,152)( 19,149)( 20,150)( 21,155)( 22,156)( 23,153)
( 24,154)( 25,159)( 26,160)( 27,157)( 28,158)( 29,163)( 30,164)( 31,161)
( 32,162)( 33,167)( 34,168)( 35,165)( 36,166)( 37,171)( 38,172)( 39,169)
( 40,170)( 41,175)( 42,176)( 43,173)( 44,174)( 45,179)( 46,180)( 47,177)
( 48,178)( 49,183)( 50,184)( 51,181)( 52,182)( 53,187)( 54,188)( 55,185)
( 56,186)( 57,191)( 58,192)( 59,189)( 60,190)( 61,195)( 62,196)( 63,193)
( 64,194)( 65,199)( 66,200)( 67,197)( 68,198)( 69,203)( 70,204)( 71,201)
( 72,202)( 73,207)( 74,208)( 75,205)( 76,206)( 77,211)( 78,212)( 79,209)
( 80,210)( 81,215)( 82,216)( 83,213)( 84,214)( 85,219)( 86,220)( 87,217)
( 88,218)( 89,223)( 90,224)( 91,221)( 92,222)( 93,227)( 94,228)( 95,225)
( 96,226)( 97,231)( 98,232)( 99,229)(100,230)(101,235)(102,236)(103,233)
(104,234)(105,239)(106,240)(107,237)(108,238)(109,243)(110,244)(111,241)
(112,242)(113,247)(114,248)(115,245)(116,246)(117,251)(118,252)(119,249)
(120,250)(121,255)(122,256)(123,253)(124,254)(125,259)(126,260)(127,257)
(128,258)(129,263)(130,264)(131,261)(132,262)(265,399)(266,400)(267,397)
(268,398)(269,403)(270,404)(271,401)(272,402)(273,407)(274,408)(275,405)
(276,406)(277,411)(278,412)(279,409)(280,410)(281,415)(282,416)(283,413)
(284,414)(285,419)(286,420)(287,417)(288,418)(289,423)(290,424)(291,421)
(292,422)(293,427)(294,428)(295,425)(296,426)(297,431)(298,432)(299,429)
(300,430)(301,435)(302,436)(303,433)(304,434)(305,439)(306,440)(307,437)
(308,438)(309,443)(310,444)(311,441)(312,442)(313,447)(314,448)(315,445)
(316,446)(317,451)(318,452)(319,449)(320,450)(321,455)(322,456)(323,453)
(324,454)(325,459)(326,460)(327,457)(328,458)(329,463)(330,464)(331,461)
(332,462)(333,467)(334,468)(335,465)(336,466)(337,471)(338,472)(339,469)
(340,470)(341,475)(342,476)(343,473)(344,474)(345,479)(346,480)(347,477)
(348,478)(349,483)(350,484)(351,481)(352,482)(353,487)(354,488)(355,485)
(356,486)(357,491)(358,492)(359,489)(360,490)(361,495)(362,496)(363,493)
(364,494)(365,499)(366,500)(367,497)(368,498)(369,503)(370,504)(371,501)
(372,502)(373,507)(374,508)(375,505)(376,506)(377,511)(378,512)(379,509)
(380,510)(381,515)(382,516)(383,513)(384,514)(385,519)(386,520)(387,517)
(388,518)(389,523)(390,524)(391,521)(392,522)(393,527)(394,528)(395,525)
(396,526);
s1 := Sym(528)!( 3, 4)( 5, 41)( 6, 42)( 7, 44)( 8, 43)( 9, 37)( 10, 38)
( 11, 40)( 12, 39)( 13, 33)( 14, 34)( 15, 36)( 16, 35)( 17, 29)( 18, 30)
( 19, 32)( 20, 31)( 21, 25)( 22, 26)( 23, 28)( 24, 27)( 45, 89)( 46, 90)
( 47, 92)( 48, 91)( 49,129)( 50,130)( 51,132)( 52,131)( 53,125)( 54,126)
( 55,128)( 56,127)( 57,121)( 58,122)( 59,124)( 60,123)( 61,117)( 62,118)
( 63,120)( 64,119)( 65,113)( 66,114)( 67,116)( 68,115)( 69,109)( 70,110)
( 71,112)( 72,111)( 73,105)( 74,106)( 75,108)( 76,107)( 77,101)( 78,102)
( 79,104)( 80,103)( 81, 97)( 82, 98)( 83,100)( 84, 99)( 85, 93)( 86, 94)
( 87, 96)( 88, 95)(135,136)(137,173)(138,174)(139,176)(140,175)(141,169)
(142,170)(143,172)(144,171)(145,165)(146,166)(147,168)(148,167)(149,161)
(150,162)(151,164)(152,163)(153,157)(154,158)(155,160)(156,159)(177,221)
(178,222)(179,224)(180,223)(181,261)(182,262)(183,264)(184,263)(185,257)
(186,258)(187,260)(188,259)(189,253)(190,254)(191,256)(192,255)(193,249)
(194,250)(195,252)(196,251)(197,245)(198,246)(199,248)(200,247)(201,241)
(202,242)(203,244)(204,243)(205,237)(206,238)(207,240)(208,239)(209,233)
(210,234)(211,236)(212,235)(213,229)(214,230)(215,232)(216,231)(217,225)
(218,226)(219,228)(220,227)(265,397)(266,398)(267,400)(268,399)(269,437)
(270,438)(271,440)(272,439)(273,433)(274,434)(275,436)(276,435)(277,429)
(278,430)(279,432)(280,431)(281,425)(282,426)(283,428)(284,427)(285,421)
(286,422)(287,424)(288,423)(289,417)(290,418)(291,420)(292,419)(293,413)
(294,414)(295,416)(296,415)(297,409)(298,410)(299,412)(300,411)(301,405)
(302,406)(303,408)(304,407)(305,401)(306,402)(307,404)(308,403)(309,485)
(310,486)(311,488)(312,487)(313,525)(314,526)(315,528)(316,527)(317,521)
(318,522)(319,524)(320,523)(321,517)(322,518)(323,520)(324,519)(325,513)
(326,514)(327,516)(328,515)(329,509)(330,510)(331,512)(332,511)(333,505)
(334,506)(335,508)(336,507)(337,501)(338,502)(339,504)(340,503)(341,497)
(342,498)(343,500)(344,499)(345,493)(346,494)(347,496)(348,495)(349,489)
(350,490)(351,492)(352,491)(353,441)(354,442)(355,444)(356,443)(357,481)
(358,482)(359,484)(360,483)(361,477)(362,478)(363,480)(364,479)(365,473)
(366,474)(367,476)(368,475)(369,469)(370,470)(371,472)(372,471)(373,465)
(374,466)(375,468)(376,467)(377,461)(378,462)(379,464)(380,463)(381,457)
(382,458)(383,460)(384,459)(385,453)(386,454)(387,456)(388,455)(389,449)
(390,450)(391,452)(392,451)(393,445)(394,446)(395,448)(396,447);
s2 := Sym(528)!( 1,313)( 2,316)( 3,315)( 4,314)( 5,309)( 6,312)( 7,311)
( 8,310)( 9,349)( 10,352)( 11,351)( 12,350)( 13,345)( 14,348)( 15,347)
( 16,346)( 17,341)( 18,344)( 19,343)( 20,342)( 21,337)( 22,340)( 23,339)
( 24,338)( 25,333)( 26,336)( 27,335)( 28,334)( 29,329)( 30,332)( 31,331)
( 32,330)( 33,325)( 34,328)( 35,327)( 36,326)( 37,321)( 38,324)( 39,323)
( 40,322)( 41,317)( 42,320)( 43,319)( 44,318)( 45,269)( 46,272)( 47,271)
( 48,270)( 49,265)( 50,268)( 51,267)( 52,266)( 53,305)( 54,308)( 55,307)
( 56,306)( 57,301)( 58,304)( 59,303)( 60,302)( 61,297)( 62,300)( 63,299)
( 64,298)( 65,293)( 66,296)( 67,295)( 68,294)( 69,289)( 70,292)( 71,291)
( 72,290)( 73,285)( 74,288)( 75,287)( 76,286)( 77,281)( 78,284)( 79,283)
( 80,282)( 81,277)( 82,280)( 83,279)( 84,278)( 85,273)( 86,276)( 87,275)
( 88,274)( 89,357)( 90,360)( 91,359)( 92,358)( 93,353)( 94,356)( 95,355)
( 96,354)( 97,393)( 98,396)( 99,395)(100,394)(101,389)(102,392)(103,391)
(104,390)(105,385)(106,388)(107,387)(108,386)(109,381)(110,384)(111,383)
(112,382)(113,377)(114,380)(115,379)(116,378)(117,373)(118,376)(119,375)
(120,374)(121,369)(122,372)(123,371)(124,370)(125,365)(126,368)(127,367)
(128,366)(129,361)(130,364)(131,363)(132,362)(133,445)(134,448)(135,447)
(136,446)(137,441)(138,444)(139,443)(140,442)(141,481)(142,484)(143,483)
(144,482)(145,477)(146,480)(147,479)(148,478)(149,473)(150,476)(151,475)
(152,474)(153,469)(154,472)(155,471)(156,470)(157,465)(158,468)(159,467)
(160,466)(161,461)(162,464)(163,463)(164,462)(165,457)(166,460)(167,459)
(168,458)(169,453)(170,456)(171,455)(172,454)(173,449)(174,452)(175,451)
(176,450)(177,401)(178,404)(179,403)(180,402)(181,397)(182,400)(183,399)
(184,398)(185,437)(186,440)(187,439)(188,438)(189,433)(190,436)(191,435)
(192,434)(193,429)(194,432)(195,431)(196,430)(197,425)(198,428)(199,427)
(200,426)(201,421)(202,424)(203,423)(204,422)(205,417)(206,420)(207,419)
(208,418)(209,413)(210,416)(211,415)(212,414)(213,409)(214,412)(215,411)
(216,410)(217,405)(218,408)(219,407)(220,406)(221,489)(222,492)(223,491)
(224,490)(225,485)(226,488)(227,487)(228,486)(229,525)(230,528)(231,527)
(232,526)(233,521)(234,524)(235,523)(236,522)(237,517)(238,520)(239,519)
(240,518)(241,513)(242,516)(243,515)(244,514)(245,509)(246,512)(247,511)
(248,510)(249,505)(250,508)(251,507)(252,506)(253,501)(254,504)(255,503)
(256,502)(257,497)(258,500)(259,499)(260,498)(261,493)(262,496)(263,495)
(264,494);
poly := sub<Sym(528)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope