Polytope of Type {2,2,134}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,134}*1072
if this polytope has a name.
Group : SmallGroup(1072,42)
Rank : 4
Schlafli Type : {2,2,134}
Number of vertices, edges, etc : 2, 2, 134, 134
Order of s0s1s2s3 : 134
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,67}*536
   67-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (  6, 71)(  7, 70)(  8, 69)(  9, 68)( 10, 67)( 11, 66)( 12, 65)( 13, 64)
( 14, 63)( 15, 62)( 16, 61)( 17, 60)( 18, 59)( 19, 58)( 20, 57)( 21, 56)
( 22, 55)( 23, 54)( 24, 53)( 25, 52)( 26, 51)( 27, 50)( 28, 49)( 29, 48)
( 30, 47)( 31, 46)( 32, 45)( 33, 44)( 34, 43)( 35, 42)( 36, 41)( 37, 40)
( 38, 39)( 73,138)( 74,137)( 75,136)( 76,135)( 77,134)( 78,133)( 79,132)
( 80,131)( 81,130)( 82,129)( 83,128)( 84,127)( 85,126)( 86,125)( 87,124)
( 88,123)( 89,122)( 90,121)( 91,120)( 92,119)( 93,118)( 94,117)( 95,116)
( 96,115)( 97,114)( 98,113)( 99,112)(100,111)(101,110)(102,109)(103,108)
(104,107)(105,106);;
s3 := (  5, 73)(  6, 72)(  7,138)(  8,137)(  9,136)( 10,135)( 11,134)( 12,133)
( 13,132)( 14,131)( 15,130)( 16,129)( 17,128)( 18,127)( 19,126)( 20,125)
( 21,124)( 22,123)( 23,122)( 24,121)( 25,120)( 26,119)( 27,118)( 28,117)
( 29,116)( 30,115)( 31,114)( 32,113)( 33,112)( 34,111)( 35,110)( 36,109)
( 37,108)( 38,107)( 39,106)( 40,105)( 41,104)( 42,103)( 43,102)( 44,101)
( 45,100)( 46, 99)( 47, 98)( 48, 97)( 49, 96)( 50, 95)( 51, 94)( 52, 93)
( 53, 92)( 54, 91)( 55, 90)( 56, 89)( 57, 88)( 58, 87)( 59, 86)( 60, 85)
( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 79)( 67, 78)( 68, 77)
( 69, 76)( 70, 75)( 71, 74);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(138)!(1,2);
s1 := Sym(138)!(3,4);
s2 := Sym(138)!(  6, 71)(  7, 70)(  8, 69)(  9, 68)( 10, 67)( 11, 66)( 12, 65)
( 13, 64)( 14, 63)( 15, 62)( 16, 61)( 17, 60)( 18, 59)( 19, 58)( 20, 57)
( 21, 56)( 22, 55)( 23, 54)( 24, 53)( 25, 52)( 26, 51)( 27, 50)( 28, 49)
( 29, 48)( 30, 47)( 31, 46)( 32, 45)( 33, 44)( 34, 43)( 35, 42)( 36, 41)
( 37, 40)( 38, 39)( 73,138)( 74,137)( 75,136)( 76,135)( 77,134)( 78,133)
( 79,132)( 80,131)( 81,130)( 82,129)( 83,128)( 84,127)( 85,126)( 86,125)
( 87,124)( 88,123)( 89,122)( 90,121)( 91,120)( 92,119)( 93,118)( 94,117)
( 95,116)( 96,115)( 97,114)( 98,113)( 99,112)(100,111)(101,110)(102,109)
(103,108)(104,107)(105,106);
s3 := Sym(138)!(  5, 73)(  6, 72)(  7,138)(  8,137)(  9,136)( 10,135)( 11,134)
( 12,133)( 13,132)( 14,131)( 15,130)( 16,129)( 17,128)( 18,127)( 19,126)
( 20,125)( 21,124)( 22,123)( 23,122)( 24,121)( 25,120)( 26,119)( 27,118)
( 28,117)( 29,116)( 30,115)( 31,114)( 32,113)( 33,112)( 34,111)( 35,110)
( 36,109)( 37,108)( 38,107)( 39,106)( 40,105)( 41,104)( 42,103)( 43,102)
( 44,101)( 45,100)( 46, 99)( 47, 98)( 48, 97)( 49, 96)( 50, 95)( 51, 94)
( 52, 93)( 53, 92)( 54, 91)( 55, 90)( 56, 89)( 57, 88)( 58, 87)( 59, 86)
( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 79)( 67, 78)
( 68, 77)( 69, 76)( 70, 75)( 71, 74);
poly := sub<Sym(138)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope