Polytope of Type {15,2,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,2,18}*1080
if this polytope has a name.
Group : SmallGroup(1080,336)
Rank : 4
Schlafli Type : {15,2,18}
Number of vertices, edges, etc : 15, 15, 18, 18
Order of s0s1s2s3 : 90
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {15,2,9}*540
   3-fold quotients : {5,2,18}*360, {15,2,6}*360
   5-fold quotients : {3,2,18}*216
   6-fold quotients : {5,2,9}*180, {15,2,3}*180
   9-fold quotients : {5,2,6}*120, {15,2,2}*120
   10-fold quotients : {3,2,9}*108
   15-fold quotients : {3,2,6}*72
   18-fold quotients : {5,2,3}*60
   27-fold quotients : {5,2,2}*40
   30-fold quotients : {3,2,3}*36
   45-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s2 := (18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33);;
s3 := (16,20)(17,18)(19,24)(21,22)(23,28)(25,26)(27,32)(29,30)(31,33);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(33)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s1 := Sym(33)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s2 := Sym(33)!(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33);
s3 := Sym(33)!(16,20)(17,18)(19,24)(21,22)(23,28)(25,26)(27,32)(29,30)(31,33);
poly := sub<Sym(33)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope