Polytope of Type {69,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {69,4}*1104
if this polytope has a name.
Group : SmallGroup(1104,162)
Rank : 3
Schlafli Type : {69,4}
Number of vertices, edges, etc : 138, 276, 8
Order of s0s1s2 : 138
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {69,4}*552
   4-fold quotients : {69,2}*276
   12-fold quotients : {23,2}*92
   23-fold quotients : {3,4}*48
   46-fold quotients : {3,4}*24
   92-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5, 89)(  6, 90)(  7, 92)(  8, 91)(  9, 85)( 10, 86)( 11, 88)
( 12, 87)( 13, 81)( 14, 82)( 15, 84)( 16, 83)( 17, 77)( 18, 78)( 19, 80)
( 20, 79)( 21, 73)( 22, 74)( 23, 76)( 24, 75)( 25, 69)( 26, 70)( 27, 72)
( 28, 71)( 29, 65)( 30, 66)( 31, 68)( 32, 67)( 33, 61)( 34, 62)( 35, 64)
( 36, 63)( 37, 57)( 38, 58)( 39, 60)( 40, 59)( 41, 53)( 42, 54)( 43, 56)
( 44, 55)( 45, 49)( 46, 50)( 47, 52)( 48, 51)( 93,185)( 94,186)( 95,188)
( 96,187)( 97,273)( 98,274)( 99,276)(100,275)(101,269)(102,270)(103,272)
(104,271)(105,265)(106,266)(107,268)(108,267)(109,261)(110,262)(111,264)
(112,263)(113,257)(114,258)(115,260)(116,259)(117,253)(118,254)(119,256)
(120,255)(121,249)(122,250)(123,252)(124,251)(125,245)(126,246)(127,248)
(128,247)(129,241)(130,242)(131,244)(132,243)(133,237)(134,238)(135,240)
(136,239)(137,233)(138,234)(139,236)(140,235)(141,229)(142,230)(143,232)
(144,231)(145,225)(146,226)(147,228)(148,227)(149,221)(150,222)(151,224)
(152,223)(153,217)(154,218)(155,220)(156,219)(157,213)(158,214)(159,216)
(160,215)(161,209)(162,210)(163,212)(164,211)(165,205)(166,206)(167,208)
(168,207)(169,201)(170,202)(171,204)(172,203)(173,197)(174,198)(175,200)
(176,199)(177,193)(178,194)(179,196)(180,195)(181,189)(182,190)(183,192)
(184,191)(279,280)(281,365)(282,366)(283,368)(284,367)(285,361)(286,362)
(287,364)(288,363)(289,357)(290,358)(291,360)(292,359)(293,353)(294,354)
(295,356)(296,355)(297,349)(298,350)(299,352)(300,351)(301,345)(302,346)
(303,348)(304,347)(305,341)(306,342)(307,344)(308,343)(309,337)(310,338)
(311,340)(312,339)(313,333)(314,334)(315,336)(316,335)(317,329)(318,330)
(319,332)(320,331)(321,325)(322,326)(323,328)(324,327)(369,461)(370,462)
(371,464)(372,463)(373,549)(374,550)(375,552)(376,551)(377,545)(378,546)
(379,548)(380,547)(381,541)(382,542)(383,544)(384,543)(385,537)(386,538)
(387,540)(388,539)(389,533)(390,534)(391,536)(392,535)(393,529)(394,530)
(395,532)(396,531)(397,525)(398,526)(399,528)(400,527)(401,521)(402,522)
(403,524)(404,523)(405,517)(406,518)(407,520)(408,519)(409,513)(410,514)
(411,516)(412,515)(413,509)(414,510)(415,512)(416,511)(417,505)(418,506)
(419,508)(420,507)(421,501)(422,502)(423,504)(424,503)(425,497)(426,498)
(427,500)(428,499)(429,493)(430,494)(431,496)(432,495)(433,489)(434,490)
(435,492)(436,491)(437,485)(438,486)(439,488)(440,487)(441,481)(442,482)
(443,484)(444,483)(445,477)(446,478)(447,480)(448,479)(449,473)(450,474)
(451,476)(452,475)(453,469)(454,470)(455,472)(456,471)(457,465)(458,466)
(459,468)(460,467);;
s1 := (  1, 97)(  2,100)(  3, 99)(  4, 98)(  5, 93)(  6, 96)(  7, 95)(  8, 94)
(  9,181)( 10,184)( 11,183)( 12,182)( 13,177)( 14,180)( 15,179)( 16,178)
( 17,173)( 18,176)( 19,175)( 20,174)( 21,169)( 22,172)( 23,171)( 24,170)
( 25,165)( 26,168)( 27,167)( 28,166)( 29,161)( 30,164)( 31,163)( 32,162)
( 33,157)( 34,160)( 35,159)( 36,158)( 37,153)( 38,156)( 39,155)( 40,154)
( 41,149)( 42,152)( 43,151)( 44,150)( 45,145)( 46,148)( 47,147)( 48,146)
( 49,141)( 50,144)( 51,143)( 52,142)( 53,137)( 54,140)( 55,139)( 56,138)
( 57,133)( 58,136)( 59,135)( 60,134)( 61,129)( 62,132)( 63,131)( 64,130)
( 65,125)( 66,128)( 67,127)( 68,126)( 69,121)( 70,124)( 71,123)( 72,122)
( 73,117)( 74,120)( 75,119)( 76,118)( 77,113)( 78,116)( 79,115)( 80,114)
( 81,109)( 82,112)( 83,111)( 84,110)( 85,105)( 86,108)( 87,107)( 88,106)
( 89,101)( 90,104)( 91,103)( 92,102)(185,189)(186,192)(187,191)(188,190)
(193,273)(194,276)(195,275)(196,274)(197,269)(198,272)(199,271)(200,270)
(201,265)(202,268)(203,267)(204,266)(205,261)(206,264)(207,263)(208,262)
(209,257)(210,260)(211,259)(212,258)(213,253)(214,256)(215,255)(216,254)
(217,249)(218,252)(219,251)(220,250)(221,245)(222,248)(223,247)(224,246)
(225,241)(226,244)(227,243)(228,242)(229,237)(230,240)(231,239)(232,238)
(234,236)(277,373)(278,376)(279,375)(280,374)(281,369)(282,372)(283,371)
(284,370)(285,457)(286,460)(287,459)(288,458)(289,453)(290,456)(291,455)
(292,454)(293,449)(294,452)(295,451)(296,450)(297,445)(298,448)(299,447)
(300,446)(301,441)(302,444)(303,443)(304,442)(305,437)(306,440)(307,439)
(308,438)(309,433)(310,436)(311,435)(312,434)(313,429)(314,432)(315,431)
(316,430)(317,425)(318,428)(319,427)(320,426)(321,421)(322,424)(323,423)
(324,422)(325,417)(326,420)(327,419)(328,418)(329,413)(330,416)(331,415)
(332,414)(333,409)(334,412)(335,411)(336,410)(337,405)(338,408)(339,407)
(340,406)(341,401)(342,404)(343,403)(344,402)(345,397)(346,400)(347,399)
(348,398)(349,393)(350,396)(351,395)(352,394)(353,389)(354,392)(355,391)
(356,390)(357,385)(358,388)(359,387)(360,386)(361,381)(362,384)(363,383)
(364,382)(365,377)(366,380)(367,379)(368,378)(461,465)(462,468)(463,467)
(464,466)(469,549)(470,552)(471,551)(472,550)(473,545)(474,548)(475,547)
(476,546)(477,541)(478,544)(479,543)(480,542)(481,537)(482,540)(483,539)
(484,538)(485,533)(486,536)(487,535)(488,534)(489,529)(490,532)(491,531)
(492,530)(493,525)(494,528)(495,527)(496,526)(497,521)(498,524)(499,523)
(500,522)(501,517)(502,520)(503,519)(504,518)(505,513)(506,516)(507,515)
(508,514)(510,512);;
s2 := (  1,278)(  2,277)(  3,280)(  4,279)(  5,282)(  6,281)(  7,284)(  8,283)
(  9,286)( 10,285)( 11,288)( 12,287)( 13,290)( 14,289)( 15,292)( 16,291)
( 17,294)( 18,293)( 19,296)( 20,295)( 21,298)( 22,297)( 23,300)( 24,299)
( 25,302)( 26,301)( 27,304)( 28,303)( 29,306)( 30,305)( 31,308)( 32,307)
( 33,310)( 34,309)( 35,312)( 36,311)( 37,314)( 38,313)( 39,316)( 40,315)
( 41,318)( 42,317)( 43,320)( 44,319)( 45,322)( 46,321)( 47,324)( 48,323)
( 49,326)( 50,325)( 51,328)( 52,327)( 53,330)( 54,329)( 55,332)( 56,331)
( 57,334)( 58,333)( 59,336)( 60,335)( 61,338)( 62,337)( 63,340)( 64,339)
( 65,342)( 66,341)( 67,344)( 68,343)( 69,346)( 70,345)( 71,348)( 72,347)
( 73,350)( 74,349)( 75,352)( 76,351)( 77,354)( 78,353)( 79,356)( 80,355)
( 81,358)( 82,357)( 83,360)( 84,359)( 85,362)( 86,361)( 87,364)( 88,363)
( 89,366)( 90,365)( 91,368)( 92,367)( 93,370)( 94,369)( 95,372)( 96,371)
( 97,374)( 98,373)( 99,376)(100,375)(101,378)(102,377)(103,380)(104,379)
(105,382)(106,381)(107,384)(108,383)(109,386)(110,385)(111,388)(112,387)
(113,390)(114,389)(115,392)(116,391)(117,394)(118,393)(119,396)(120,395)
(121,398)(122,397)(123,400)(124,399)(125,402)(126,401)(127,404)(128,403)
(129,406)(130,405)(131,408)(132,407)(133,410)(134,409)(135,412)(136,411)
(137,414)(138,413)(139,416)(140,415)(141,418)(142,417)(143,420)(144,419)
(145,422)(146,421)(147,424)(148,423)(149,426)(150,425)(151,428)(152,427)
(153,430)(154,429)(155,432)(156,431)(157,434)(158,433)(159,436)(160,435)
(161,438)(162,437)(163,440)(164,439)(165,442)(166,441)(167,444)(168,443)
(169,446)(170,445)(171,448)(172,447)(173,450)(174,449)(175,452)(176,451)
(177,454)(178,453)(179,456)(180,455)(181,458)(182,457)(183,460)(184,459)
(185,462)(186,461)(187,464)(188,463)(189,466)(190,465)(191,468)(192,467)
(193,470)(194,469)(195,472)(196,471)(197,474)(198,473)(199,476)(200,475)
(201,478)(202,477)(203,480)(204,479)(205,482)(206,481)(207,484)(208,483)
(209,486)(210,485)(211,488)(212,487)(213,490)(214,489)(215,492)(216,491)
(217,494)(218,493)(219,496)(220,495)(221,498)(222,497)(223,500)(224,499)
(225,502)(226,501)(227,504)(228,503)(229,506)(230,505)(231,508)(232,507)
(233,510)(234,509)(235,512)(236,511)(237,514)(238,513)(239,516)(240,515)
(241,518)(242,517)(243,520)(244,519)(245,522)(246,521)(247,524)(248,523)
(249,526)(250,525)(251,528)(252,527)(253,530)(254,529)(255,532)(256,531)
(257,534)(258,533)(259,536)(260,535)(261,538)(262,537)(263,540)(264,539)
(265,542)(266,541)(267,544)(268,543)(269,546)(270,545)(271,548)(272,547)
(273,550)(274,549)(275,552)(276,551);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(552)!(  3,  4)(  5, 89)(  6, 90)(  7, 92)(  8, 91)(  9, 85)( 10, 86)
( 11, 88)( 12, 87)( 13, 81)( 14, 82)( 15, 84)( 16, 83)( 17, 77)( 18, 78)
( 19, 80)( 20, 79)( 21, 73)( 22, 74)( 23, 76)( 24, 75)( 25, 69)( 26, 70)
( 27, 72)( 28, 71)( 29, 65)( 30, 66)( 31, 68)( 32, 67)( 33, 61)( 34, 62)
( 35, 64)( 36, 63)( 37, 57)( 38, 58)( 39, 60)( 40, 59)( 41, 53)( 42, 54)
( 43, 56)( 44, 55)( 45, 49)( 46, 50)( 47, 52)( 48, 51)( 93,185)( 94,186)
( 95,188)( 96,187)( 97,273)( 98,274)( 99,276)(100,275)(101,269)(102,270)
(103,272)(104,271)(105,265)(106,266)(107,268)(108,267)(109,261)(110,262)
(111,264)(112,263)(113,257)(114,258)(115,260)(116,259)(117,253)(118,254)
(119,256)(120,255)(121,249)(122,250)(123,252)(124,251)(125,245)(126,246)
(127,248)(128,247)(129,241)(130,242)(131,244)(132,243)(133,237)(134,238)
(135,240)(136,239)(137,233)(138,234)(139,236)(140,235)(141,229)(142,230)
(143,232)(144,231)(145,225)(146,226)(147,228)(148,227)(149,221)(150,222)
(151,224)(152,223)(153,217)(154,218)(155,220)(156,219)(157,213)(158,214)
(159,216)(160,215)(161,209)(162,210)(163,212)(164,211)(165,205)(166,206)
(167,208)(168,207)(169,201)(170,202)(171,204)(172,203)(173,197)(174,198)
(175,200)(176,199)(177,193)(178,194)(179,196)(180,195)(181,189)(182,190)
(183,192)(184,191)(279,280)(281,365)(282,366)(283,368)(284,367)(285,361)
(286,362)(287,364)(288,363)(289,357)(290,358)(291,360)(292,359)(293,353)
(294,354)(295,356)(296,355)(297,349)(298,350)(299,352)(300,351)(301,345)
(302,346)(303,348)(304,347)(305,341)(306,342)(307,344)(308,343)(309,337)
(310,338)(311,340)(312,339)(313,333)(314,334)(315,336)(316,335)(317,329)
(318,330)(319,332)(320,331)(321,325)(322,326)(323,328)(324,327)(369,461)
(370,462)(371,464)(372,463)(373,549)(374,550)(375,552)(376,551)(377,545)
(378,546)(379,548)(380,547)(381,541)(382,542)(383,544)(384,543)(385,537)
(386,538)(387,540)(388,539)(389,533)(390,534)(391,536)(392,535)(393,529)
(394,530)(395,532)(396,531)(397,525)(398,526)(399,528)(400,527)(401,521)
(402,522)(403,524)(404,523)(405,517)(406,518)(407,520)(408,519)(409,513)
(410,514)(411,516)(412,515)(413,509)(414,510)(415,512)(416,511)(417,505)
(418,506)(419,508)(420,507)(421,501)(422,502)(423,504)(424,503)(425,497)
(426,498)(427,500)(428,499)(429,493)(430,494)(431,496)(432,495)(433,489)
(434,490)(435,492)(436,491)(437,485)(438,486)(439,488)(440,487)(441,481)
(442,482)(443,484)(444,483)(445,477)(446,478)(447,480)(448,479)(449,473)
(450,474)(451,476)(452,475)(453,469)(454,470)(455,472)(456,471)(457,465)
(458,466)(459,468)(460,467);
s1 := Sym(552)!(  1, 97)(  2,100)(  3, 99)(  4, 98)(  5, 93)(  6, 96)(  7, 95)
(  8, 94)(  9,181)( 10,184)( 11,183)( 12,182)( 13,177)( 14,180)( 15,179)
( 16,178)( 17,173)( 18,176)( 19,175)( 20,174)( 21,169)( 22,172)( 23,171)
( 24,170)( 25,165)( 26,168)( 27,167)( 28,166)( 29,161)( 30,164)( 31,163)
( 32,162)( 33,157)( 34,160)( 35,159)( 36,158)( 37,153)( 38,156)( 39,155)
( 40,154)( 41,149)( 42,152)( 43,151)( 44,150)( 45,145)( 46,148)( 47,147)
( 48,146)( 49,141)( 50,144)( 51,143)( 52,142)( 53,137)( 54,140)( 55,139)
( 56,138)( 57,133)( 58,136)( 59,135)( 60,134)( 61,129)( 62,132)( 63,131)
( 64,130)( 65,125)( 66,128)( 67,127)( 68,126)( 69,121)( 70,124)( 71,123)
( 72,122)( 73,117)( 74,120)( 75,119)( 76,118)( 77,113)( 78,116)( 79,115)
( 80,114)( 81,109)( 82,112)( 83,111)( 84,110)( 85,105)( 86,108)( 87,107)
( 88,106)( 89,101)( 90,104)( 91,103)( 92,102)(185,189)(186,192)(187,191)
(188,190)(193,273)(194,276)(195,275)(196,274)(197,269)(198,272)(199,271)
(200,270)(201,265)(202,268)(203,267)(204,266)(205,261)(206,264)(207,263)
(208,262)(209,257)(210,260)(211,259)(212,258)(213,253)(214,256)(215,255)
(216,254)(217,249)(218,252)(219,251)(220,250)(221,245)(222,248)(223,247)
(224,246)(225,241)(226,244)(227,243)(228,242)(229,237)(230,240)(231,239)
(232,238)(234,236)(277,373)(278,376)(279,375)(280,374)(281,369)(282,372)
(283,371)(284,370)(285,457)(286,460)(287,459)(288,458)(289,453)(290,456)
(291,455)(292,454)(293,449)(294,452)(295,451)(296,450)(297,445)(298,448)
(299,447)(300,446)(301,441)(302,444)(303,443)(304,442)(305,437)(306,440)
(307,439)(308,438)(309,433)(310,436)(311,435)(312,434)(313,429)(314,432)
(315,431)(316,430)(317,425)(318,428)(319,427)(320,426)(321,421)(322,424)
(323,423)(324,422)(325,417)(326,420)(327,419)(328,418)(329,413)(330,416)
(331,415)(332,414)(333,409)(334,412)(335,411)(336,410)(337,405)(338,408)
(339,407)(340,406)(341,401)(342,404)(343,403)(344,402)(345,397)(346,400)
(347,399)(348,398)(349,393)(350,396)(351,395)(352,394)(353,389)(354,392)
(355,391)(356,390)(357,385)(358,388)(359,387)(360,386)(361,381)(362,384)
(363,383)(364,382)(365,377)(366,380)(367,379)(368,378)(461,465)(462,468)
(463,467)(464,466)(469,549)(470,552)(471,551)(472,550)(473,545)(474,548)
(475,547)(476,546)(477,541)(478,544)(479,543)(480,542)(481,537)(482,540)
(483,539)(484,538)(485,533)(486,536)(487,535)(488,534)(489,529)(490,532)
(491,531)(492,530)(493,525)(494,528)(495,527)(496,526)(497,521)(498,524)
(499,523)(500,522)(501,517)(502,520)(503,519)(504,518)(505,513)(506,516)
(507,515)(508,514)(510,512);
s2 := Sym(552)!(  1,278)(  2,277)(  3,280)(  4,279)(  5,282)(  6,281)(  7,284)
(  8,283)(  9,286)( 10,285)( 11,288)( 12,287)( 13,290)( 14,289)( 15,292)
( 16,291)( 17,294)( 18,293)( 19,296)( 20,295)( 21,298)( 22,297)( 23,300)
( 24,299)( 25,302)( 26,301)( 27,304)( 28,303)( 29,306)( 30,305)( 31,308)
( 32,307)( 33,310)( 34,309)( 35,312)( 36,311)( 37,314)( 38,313)( 39,316)
( 40,315)( 41,318)( 42,317)( 43,320)( 44,319)( 45,322)( 46,321)( 47,324)
( 48,323)( 49,326)( 50,325)( 51,328)( 52,327)( 53,330)( 54,329)( 55,332)
( 56,331)( 57,334)( 58,333)( 59,336)( 60,335)( 61,338)( 62,337)( 63,340)
( 64,339)( 65,342)( 66,341)( 67,344)( 68,343)( 69,346)( 70,345)( 71,348)
( 72,347)( 73,350)( 74,349)( 75,352)( 76,351)( 77,354)( 78,353)( 79,356)
( 80,355)( 81,358)( 82,357)( 83,360)( 84,359)( 85,362)( 86,361)( 87,364)
( 88,363)( 89,366)( 90,365)( 91,368)( 92,367)( 93,370)( 94,369)( 95,372)
( 96,371)( 97,374)( 98,373)( 99,376)(100,375)(101,378)(102,377)(103,380)
(104,379)(105,382)(106,381)(107,384)(108,383)(109,386)(110,385)(111,388)
(112,387)(113,390)(114,389)(115,392)(116,391)(117,394)(118,393)(119,396)
(120,395)(121,398)(122,397)(123,400)(124,399)(125,402)(126,401)(127,404)
(128,403)(129,406)(130,405)(131,408)(132,407)(133,410)(134,409)(135,412)
(136,411)(137,414)(138,413)(139,416)(140,415)(141,418)(142,417)(143,420)
(144,419)(145,422)(146,421)(147,424)(148,423)(149,426)(150,425)(151,428)
(152,427)(153,430)(154,429)(155,432)(156,431)(157,434)(158,433)(159,436)
(160,435)(161,438)(162,437)(163,440)(164,439)(165,442)(166,441)(167,444)
(168,443)(169,446)(170,445)(171,448)(172,447)(173,450)(174,449)(175,452)
(176,451)(177,454)(178,453)(179,456)(180,455)(181,458)(182,457)(183,460)
(184,459)(185,462)(186,461)(187,464)(188,463)(189,466)(190,465)(191,468)
(192,467)(193,470)(194,469)(195,472)(196,471)(197,474)(198,473)(199,476)
(200,475)(201,478)(202,477)(203,480)(204,479)(205,482)(206,481)(207,484)
(208,483)(209,486)(210,485)(211,488)(212,487)(213,490)(214,489)(215,492)
(216,491)(217,494)(218,493)(219,496)(220,495)(221,498)(222,497)(223,500)
(224,499)(225,502)(226,501)(227,504)(228,503)(229,506)(230,505)(231,508)
(232,507)(233,510)(234,509)(235,512)(236,511)(237,514)(238,513)(239,516)
(240,515)(241,518)(242,517)(243,520)(244,519)(245,522)(246,521)(247,524)
(248,523)(249,526)(250,525)(251,528)(252,527)(253,530)(254,529)(255,532)
(256,531)(257,534)(258,533)(259,536)(260,535)(261,538)(262,537)(263,540)
(264,539)(265,542)(266,541)(267,544)(268,543)(269,546)(270,545)(271,548)
(272,547)(273,550)(274,549)(275,552)(276,551);
poly := sub<Sym(552)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope