Polytope of Type {138,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {138,2,2}*1104
Tell me
if this polytope has a name.
Group : SmallGroup(1104,169)
Rank : 4
Schlafli Type : {138,2,2}
Number of vertices, edges, etc : 138, 138, 2, 2
Order of s0s1s2s3 : 138
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {69,2,2}*552
3-fold quotients : {46,2,2}*368
6-fold quotients : {23,2,2}*184
23-fold quotients : {6,2,2}*48
46-fold quotients : {3,2,2}*24
69-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 23)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)( 8, 17)( 9, 16)
( 10, 15)( 11, 14)( 12, 13)( 24, 47)( 25, 69)( 26, 68)( 27, 67)( 28, 66)
( 29, 65)( 30, 64)( 31, 63)( 32, 62)( 33, 61)( 34, 60)( 35, 59)( 36, 58)
( 37, 57)( 38, 56)( 39, 55)( 40, 54)( 41, 53)( 42, 52)( 43, 51)( 44, 50)
( 45, 49)( 46, 48)( 71, 92)( 72, 91)( 73, 90)( 74, 89)( 75, 88)( 76, 87)
( 77, 86)( 78, 85)( 79, 84)( 80, 83)( 81, 82)( 93,116)( 94,138)( 95,137)
( 96,136)( 97,135)( 98,134)( 99,133)(100,132)(101,131)(102,130)(103,129)
(104,128)(105,127)(106,126)(107,125)(108,124)(109,123)(110,122)(111,121)
(112,120)(113,119)(114,118)(115,117);;
s1 := ( 1, 94)( 2, 93)( 3,115)( 4,114)( 5,113)( 6,112)( 7,111)( 8,110)
( 9,109)( 10,108)( 11,107)( 12,106)( 13,105)( 14,104)( 15,103)( 16,102)
( 17,101)( 18,100)( 19, 99)( 20, 98)( 21, 97)( 22, 96)( 23, 95)( 24, 71)
( 25, 70)( 26, 92)( 27, 91)( 28, 90)( 29, 89)( 30, 88)( 31, 87)( 32, 86)
( 33, 85)( 34, 84)( 35, 83)( 36, 82)( 37, 81)( 38, 80)( 39, 79)( 40, 78)
( 41, 77)( 42, 76)( 43, 75)( 44, 74)( 45, 73)( 46, 72)( 47,117)( 48,116)
( 49,138)( 50,137)( 51,136)( 52,135)( 53,134)( 54,133)( 55,132)( 56,131)
( 57,130)( 58,129)( 59,128)( 60,127)( 61,126)( 62,125)( 63,124)( 64,123)
( 65,122)( 66,121)( 67,120)( 68,119)( 69,118);;
s2 := (139,140);;
s3 := (141,142);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(142)!( 2, 23)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)( 8, 17)
( 9, 16)( 10, 15)( 11, 14)( 12, 13)( 24, 47)( 25, 69)( 26, 68)( 27, 67)
( 28, 66)( 29, 65)( 30, 64)( 31, 63)( 32, 62)( 33, 61)( 34, 60)( 35, 59)
( 36, 58)( 37, 57)( 38, 56)( 39, 55)( 40, 54)( 41, 53)( 42, 52)( 43, 51)
( 44, 50)( 45, 49)( 46, 48)( 71, 92)( 72, 91)( 73, 90)( 74, 89)( 75, 88)
( 76, 87)( 77, 86)( 78, 85)( 79, 84)( 80, 83)( 81, 82)( 93,116)( 94,138)
( 95,137)( 96,136)( 97,135)( 98,134)( 99,133)(100,132)(101,131)(102,130)
(103,129)(104,128)(105,127)(106,126)(107,125)(108,124)(109,123)(110,122)
(111,121)(112,120)(113,119)(114,118)(115,117);
s1 := Sym(142)!( 1, 94)( 2, 93)( 3,115)( 4,114)( 5,113)( 6,112)( 7,111)
( 8,110)( 9,109)( 10,108)( 11,107)( 12,106)( 13,105)( 14,104)( 15,103)
( 16,102)( 17,101)( 18,100)( 19, 99)( 20, 98)( 21, 97)( 22, 96)( 23, 95)
( 24, 71)( 25, 70)( 26, 92)( 27, 91)( 28, 90)( 29, 89)( 30, 88)( 31, 87)
( 32, 86)( 33, 85)( 34, 84)( 35, 83)( 36, 82)( 37, 81)( 38, 80)( 39, 79)
( 40, 78)( 41, 77)( 42, 76)( 43, 75)( 44, 74)( 45, 73)( 46, 72)( 47,117)
( 48,116)( 49,138)( 50,137)( 51,136)( 52,135)( 53,134)( 54,133)( 55,132)
( 56,131)( 57,130)( 58,129)( 59,128)( 60,127)( 61,126)( 62,125)( 63,124)
( 64,123)( 65,122)( 66,121)( 67,120)( 68,119)( 69,118);
s2 := Sym(142)!(139,140);
s3 := Sym(142)!(141,142);
poly := sub<Sym(142)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
Suggest a published reference
to this polytope