include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,2,70}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,70}*1120
if this polytope has a name.
Group : SmallGroup(1120,1061)
Rank : 4
Schlafli Type : {4,2,70}
Number of vertices, edges, etc : 4, 4, 70, 70
Order of s0s1s2s3 : 140
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,2,35}*560, {2,2,70}*560
4-fold quotients : {2,2,35}*280
5-fold quotients : {4,2,14}*224
7-fold quotients : {4,2,10}*160
10-fold quotients : {4,2,7}*112, {2,2,14}*112
14-fold quotients : {4,2,5}*80, {2,2,10}*80
20-fold quotients : {2,2,7}*56
28-fold quotients : {2,2,5}*40
35-fold quotients : {4,2,2}*32
70-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 6,11)( 7,10)( 8, 9)(12,33)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)
(19,26)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(41,46)(42,45)(43,44)(47,68)
(48,74)(49,73)(50,72)(51,71)(52,70)(53,69)(54,61)(55,67)(56,66)(57,65)(58,64)
(59,63)(60,62);;
s3 := ( 5,48)( 6,47)( 7,53)( 8,52)( 9,51)(10,50)(11,49)(12,41)(13,40)(14,46)
(15,45)(16,44)(17,43)(18,42)(19,69)(20,68)(21,74)(22,73)(23,72)(24,71)(25,70)
(26,62)(27,61)(28,67)(29,66)(30,65)(31,64)(32,63)(33,55)(34,54)(35,60)(36,59)
(37,58)(38,57)(39,56);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(74)!(2,3);
s1 := Sym(74)!(1,2)(3,4);
s2 := Sym(74)!( 6,11)( 7,10)( 8, 9)(12,33)(13,39)(14,38)(15,37)(16,36)(17,35)
(18,34)(19,26)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(41,46)(42,45)(43,44)
(47,68)(48,74)(49,73)(50,72)(51,71)(52,70)(53,69)(54,61)(55,67)(56,66)(57,65)
(58,64)(59,63)(60,62);
s3 := Sym(74)!( 5,48)( 6,47)( 7,53)( 8,52)( 9,51)(10,50)(11,49)(12,41)(13,40)
(14,46)(15,45)(16,44)(17,43)(18,42)(19,69)(20,68)(21,74)(22,73)(23,72)(24,71)
(25,70)(26,62)(27,61)(28,67)(29,66)(30,65)(31,64)(32,63)(33,55)(34,54)(35,60)
(36,59)(37,58)(38,57)(39,56);
poly := sub<Sym(74)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope