Polytope of Type {5,2,28,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,28,2}*1120
if this polytope has a name.
Group : SmallGroup(1120,989)
Rank : 5
Schlafli Type : {5,2,28,2}
Number of vertices, edges, etc : 5, 5, 28, 28, 2
Order of s0s1s2s3s4 : 140
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,14,2}*560
   4-fold quotients : {5,2,7,2}*280
   7-fold quotients : {5,2,4,2}*160
   14-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 7, 8)( 9,10)(12,15)(13,14)(16,17)(18,19)(20,23)(21,22)(24,25)(26,27)
(28,31)(29,30)(32,33);;
s3 := ( 6,12)( 7, 9)( 8,18)(10,20)(11,14)(13,16)(15,26)(17,28)(19,22)(21,24)
(23,32)(25,29)(27,30)(31,33);;
s4 := (34,35);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(35)!(2,3)(4,5);
s1 := Sym(35)!(1,2)(3,4);
s2 := Sym(35)!( 7, 8)( 9,10)(12,15)(13,14)(16,17)(18,19)(20,23)(21,22)(24,25)
(26,27)(28,31)(29,30)(32,33);
s3 := Sym(35)!( 6,12)( 7, 9)( 8,18)(10,20)(11,14)(13,16)(15,26)(17,28)(19,22)
(21,24)(23,32)(25,29)(27,30)(31,33);
s4 := Sym(35)!(34,35);
poly := sub<Sym(35)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope