include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {24,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,24}*1152h
if this polytope has a name.
Group : SmallGroup(1152,12917)
Rank : 3
Schlafli Type : {24,24}
Number of vertices, edges, etc : 24, 288, 24
Order of s0s1s2 : 24
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {24,12}*576b, {12,24}*576d
3-fold quotients : {8,24}*384b
4-fold quotients : {6,24}*288b, {12,12}*288b, {24,6}*288c
6-fold quotients : {4,24}*192a, {8,12}*192a
8-fold quotients : {6,12}*144b, {12,6}*144c
9-fold quotients : {8,8}*128b
12-fold quotients : {4,12}*96a, {2,24}*96, {8,6}*96
16-fold quotients : {6,6}*72b
18-fold quotients : {4,8}*64a, {8,4}*64a
24-fold quotients : {2,12}*48, {4,6}*48a
32-fold quotients : {6,3}*36
36-fold quotients : {4,4}*32, {2,8}*32, {8,2}*32
48-fold quotients : {2,6}*24
72-fold quotients : {2,4}*16, {4,2}*16
96-fold quotients : {2,3}*12
144-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,433)( 2,440)( 3,438)( 4,439)( 5,437)( 6,435)( 7,436)( 8,434)
( 9,441)( 10,442)( 11,449)( 12,447)( 13,448)( 14,446)( 15,444)( 16,445)
( 17,443)( 18,450)( 19,451)( 20,458)( 21,456)( 22,457)( 23,455)( 24,453)
( 25,454)( 26,452)( 27,459)( 28,460)( 29,467)( 30,465)( 31,466)( 32,464)
( 33,462)( 34,463)( 35,461)( 36,468)( 37,469)( 38,476)( 39,474)( 40,475)
( 41,473)( 42,471)( 43,472)( 44,470)( 45,477)( 46,478)( 47,485)( 48,483)
( 49,484)( 50,482)( 51,480)( 52,481)( 53,479)( 54,486)( 55,487)( 56,494)
( 57,492)( 58,493)( 59,491)( 60,489)( 61,490)( 62,488)( 63,495)( 64,496)
( 65,503)( 66,501)( 67,502)( 68,500)( 69,498)( 70,499)( 71,497)( 72,504)
( 73,532)( 74,539)( 75,537)( 76,538)( 77,536)( 78,534)( 79,535)( 80,533)
( 81,540)( 82,523)( 83,530)( 84,528)( 85,529)( 86,527)( 87,525)( 88,526)
( 89,524)( 90,531)( 91,514)( 92,521)( 93,519)( 94,520)( 95,518)( 96,516)
( 97,517)( 98,515)( 99,522)(100,505)(101,512)(102,510)(103,511)(104,509)
(105,507)(106,508)(107,506)(108,513)(109,568)(110,575)(111,573)(112,574)
(113,572)(114,570)(115,571)(116,569)(117,576)(118,559)(119,566)(120,564)
(121,565)(122,563)(123,561)(124,562)(125,560)(126,567)(127,550)(128,557)
(129,555)(130,556)(131,554)(132,552)(133,553)(134,551)(135,558)(136,541)
(137,548)(138,546)(139,547)(140,545)(141,543)(142,544)(143,542)(144,549)
(145,289)(146,296)(147,294)(148,295)(149,293)(150,291)(151,292)(152,290)
(153,297)(154,298)(155,305)(156,303)(157,304)(158,302)(159,300)(160,301)
(161,299)(162,306)(163,307)(164,314)(165,312)(166,313)(167,311)(168,309)
(169,310)(170,308)(171,315)(172,316)(173,323)(174,321)(175,322)(176,320)
(177,318)(178,319)(179,317)(180,324)(181,325)(182,332)(183,330)(184,331)
(185,329)(186,327)(187,328)(188,326)(189,333)(190,334)(191,341)(192,339)
(193,340)(194,338)(195,336)(196,337)(197,335)(198,342)(199,343)(200,350)
(201,348)(202,349)(203,347)(204,345)(205,346)(206,344)(207,351)(208,352)
(209,359)(210,357)(211,358)(212,356)(213,354)(214,355)(215,353)(216,360)
(217,388)(218,395)(219,393)(220,394)(221,392)(222,390)(223,391)(224,389)
(225,396)(226,379)(227,386)(228,384)(229,385)(230,383)(231,381)(232,382)
(233,380)(234,387)(235,370)(236,377)(237,375)(238,376)(239,374)(240,372)
(241,373)(242,371)(243,378)(244,361)(245,368)(246,366)(247,367)(248,365)
(249,363)(250,364)(251,362)(252,369)(253,424)(254,431)(255,429)(256,430)
(257,428)(258,426)(259,427)(260,425)(261,432)(262,415)(263,422)(264,420)
(265,421)(266,419)(267,417)(268,418)(269,416)(270,423)(271,406)(272,413)
(273,411)(274,412)(275,410)(276,408)(277,409)(278,407)(279,414)(280,397)
(281,404)(282,402)(283,403)(284,401)(285,399)(286,400)(287,398)(288,405);;
s1 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)( 10, 13)( 11, 15)( 12, 14)( 17, 18)
( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)( 35, 36)
( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)( 42, 47)( 43, 52)( 44, 54)
( 45, 53)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)( 61, 70)
( 62, 72)( 63, 71)( 73, 94)( 74, 96)( 75, 95)( 76, 91)( 77, 93)( 78, 92)
( 79, 97)( 80, 99)( 81, 98)( 82,103)( 83,105)( 84,104)( 85,100)( 86,102)
( 87,101)( 88,106)( 89,108)( 90,107)(109,139)(110,141)(111,140)(112,136)
(113,138)(114,137)(115,142)(116,144)(117,143)(118,130)(119,132)(120,131)
(121,127)(122,129)(123,128)(124,133)(125,135)(126,134)(145,184)(146,186)
(147,185)(148,181)(149,183)(150,182)(151,187)(152,189)(153,188)(154,193)
(155,195)(156,194)(157,190)(158,192)(159,191)(160,196)(161,198)(162,197)
(163,202)(164,204)(165,203)(166,199)(167,201)(168,200)(169,205)(170,207)
(171,206)(172,211)(173,213)(174,212)(175,208)(176,210)(177,209)(178,214)
(179,216)(180,215)(217,274)(218,276)(219,275)(220,271)(221,273)(222,272)
(223,277)(224,279)(225,278)(226,283)(227,285)(228,284)(229,280)(230,282)
(231,281)(232,286)(233,288)(234,287)(235,256)(236,258)(237,257)(238,253)
(239,255)(240,254)(241,259)(242,261)(243,260)(244,265)(245,267)(246,266)
(247,262)(248,264)(249,263)(250,268)(251,270)(252,269)(289,364)(290,366)
(291,365)(292,361)(293,363)(294,362)(295,367)(296,369)(297,368)(298,373)
(299,375)(300,374)(301,370)(302,372)(303,371)(304,376)(305,378)(306,377)
(307,382)(308,384)(309,383)(310,379)(311,381)(312,380)(313,385)(314,387)
(315,386)(316,391)(317,393)(318,392)(319,388)(320,390)(321,389)(322,394)
(323,396)(324,395)(325,409)(326,411)(327,410)(328,406)(329,408)(330,407)
(331,412)(332,414)(333,413)(334,400)(335,402)(336,401)(337,397)(338,399)
(339,398)(340,403)(341,405)(342,404)(343,427)(344,429)(345,428)(346,424)
(347,426)(348,425)(349,430)(350,432)(351,431)(352,418)(353,420)(354,419)
(355,415)(356,417)(357,416)(358,421)(359,423)(360,422)(433,553)(434,555)
(435,554)(436,550)(437,552)(438,551)(439,556)(440,558)(441,557)(442,544)
(443,546)(444,545)(445,541)(446,543)(447,542)(448,547)(449,549)(450,548)
(451,571)(452,573)(453,572)(454,568)(455,570)(456,569)(457,574)(458,576)
(459,575)(460,562)(461,564)(462,563)(463,559)(464,561)(465,560)(466,565)
(467,567)(468,566)(469,517)(470,519)(471,518)(472,514)(473,516)(474,515)
(475,520)(476,522)(477,521)(478,508)(479,510)(480,509)(481,505)(482,507)
(483,506)(484,511)(485,513)(486,512)(487,535)(488,537)(489,536)(490,532)
(491,534)(492,533)(493,538)(494,540)(495,539)(496,526)(497,528)(498,527)
(499,523)(500,525)(501,524)(502,529)(503,531)(504,530);;
s2 := ( 1,149)( 2,148)( 3,150)( 4,146)( 5,145)( 6,147)( 7,152)( 8,151)
( 9,153)( 10,158)( 11,157)( 12,159)( 13,155)( 14,154)( 15,156)( 16,161)
( 17,160)( 18,162)( 19,167)( 20,166)( 21,168)( 22,164)( 23,163)( 24,165)
( 25,170)( 26,169)( 27,171)( 28,176)( 29,175)( 30,177)( 31,173)( 32,172)
( 33,174)( 34,179)( 35,178)( 36,180)( 37,194)( 38,193)( 39,195)( 40,191)
( 41,190)( 42,192)( 43,197)( 44,196)( 45,198)( 46,185)( 47,184)( 48,186)
( 49,182)( 50,181)( 51,183)( 52,188)( 53,187)( 54,189)( 55,212)( 56,211)
( 57,213)( 58,209)( 59,208)( 60,210)( 61,215)( 62,214)( 63,216)( 64,203)
( 65,202)( 66,204)( 67,200)( 68,199)( 69,201)( 70,206)( 71,205)( 72,207)
( 73,230)( 74,229)( 75,231)( 76,227)( 77,226)( 78,228)( 79,233)( 80,232)
( 81,234)( 82,221)( 83,220)( 84,222)( 85,218)( 86,217)( 87,219)( 88,224)
( 89,223)( 90,225)( 91,248)( 92,247)( 93,249)( 94,245)( 95,244)( 96,246)
( 97,251)( 98,250)( 99,252)(100,239)(101,238)(102,240)(103,236)(104,235)
(105,237)(106,242)(107,241)(108,243)(109,257)(110,256)(111,258)(112,254)
(113,253)(114,255)(115,260)(116,259)(117,261)(118,266)(119,265)(120,267)
(121,263)(122,262)(123,264)(124,269)(125,268)(126,270)(127,275)(128,274)
(129,276)(130,272)(131,271)(132,273)(133,278)(134,277)(135,279)(136,284)
(137,283)(138,285)(139,281)(140,280)(141,282)(142,287)(143,286)(144,288)
(289,437)(290,436)(291,438)(292,434)(293,433)(294,435)(295,440)(296,439)
(297,441)(298,446)(299,445)(300,447)(301,443)(302,442)(303,444)(304,449)
(305,448)(306,450)(307,455)(308,454)(309,456)(310,452)(311,451)(312,453)
(313,458)(314,457)(315,459)(316,464)(317,463)(318,465)(319,461)(320,460)
(321,462)(322,467)(323,466)(324,468)(325,482)(326,481)(327,483)(328,479)
(329,478)(330,480)(331,485)(332,484)(333,486)(334,473)(335,472)(336,474)
(337,470)(338,469)(339,471)(340,476)(341,475)(342,477)(343,500)(344,499)
(345,501)(346,497)(347,496)(348,498)(349,503)(350,502)(351,504)(352,491)
(353,490)(354,492)(355,488)(356,487)(357,489)(358,494)(359,493)(360,495)
(361,518)(362,517)(363,519)(364,515)(365,514)(366,516)(367,521)(368,520)
(369,522)(370,509)(371,508)(372,510)(373,506)(374,505)(375,507)(376,512)
(377,511)(378,513)(379,536)(380,535)(381,537)(382,533)(383,532)(384,534)
(385,539)(386,538)(387,540)(388,527)(389,526)(390,528)(391,524)(392,523)
(393,525)(394,530)(395,529)(396,531)(397,545)(398,544)(399,546)(400,542)
(401,541)(402,543)(403,548)(404,547)(405,549)(406,554)(407,553)(408,555)
(409,551)(410,550)(411,552)(412,557)(413,556)(414,558)(415,563)(416,562)
(417,564)(418,560)(419,559)(420,561)(421,566)(422,565)(423,567)(424,572)
(425,571)(426,573)(427,569)(428,568)(429,570)(430,575)(431,574)(432,576);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(576)!( 1,433)( 2,440)( 3,438)( 4,439)( 5,437)( 6,435)( 7,436)
( 8,434)( 9,441)( 10,442)( 11,449)( 12,447)( 13,448)( 14,446)( 15,444)
( 16,445)( 17,443)( 18,450)( 19,451)( 20,458)( 21,456)( 22,457)( 23,455)
( 24,453)( 25,454)( 26,452)( 27,459)( 28,460)( 29,467)( 30,465)( 31,466)
( 32,464)( 33,462)( 34,463)( 35,461)( 36,468)( 37,469)( 38,476)( 39,474)
( 40,475)( 41,473)( 42,471)( 43,472)( 44,470)( 45,477)( 46,478)( 47,485)
( 48,483)( 49,484)( 50,482)( 51,480)( 52,481)( 53,479)( 54,486)( 55,487)
( 56,494)( 57,492)( 58,493)( 59,491)( 60,489)( 61,490)( 62,488)( 63,495)
( 64,496)( 65,503)( 66,501)( 67,502)( 68,500)( 69,498)( 70,499)( 71,497)
( 72,504)( 73,532)( 74,539)( 75,537)( 76,538)( 77,536)( 78,534)( 79,535)
( 80,533)( 81,540)( 82,523)( 83,530)( 84,528)( 85,529)( 86,527)( 87,525)
( 88,526)( 89,524)( 90,531)( 91,514)( 92,521)( 93,519)( 94,520)( 95,518)
( 96,516)( 97,517)( 98,515)( 99,522)(100,505)(101,512)(102,510)(103,511)
(104,509)(105,507)(106,508)(107,506)(108,513)(109,568)(110,575)(111,573)
(112,574)(113,572)(114,570)(115,571)(116,569)(117,576)(118,559)(119,566)
(120,564)(121,565)(122,563)(123,561)(124,562)(125,560)(126,567)(127,550)
(128,557)(129,555)(130,556)(131,554)(132,552)(133,553)(134,551)(135,558)
(136,541)(137,548)(138,546)(139,547)(140,545)(141,543)(142,544)(143,542)
(144,549)(145,289)(146,296)(147,294)(148,295)(149,293)(150,291)(151,292)
(152,290)(153,297)(154,298)(155,305)(156,303)(157,304)(158,302)(159,300)
(160,301)(161,299)(162,306)(163,307)(164,314)(165,312)(166,313)(167,311)
(168,309)(169,310)(170,308)(171,315)(172,316)(173,323)(174,321)(175,322)
(176,320)(177,318)(178,319)(179,317)(180,324)(181,325)(182,332)(183,330)
(184,331)(185,329)(186,327)(187,328)(188,326)(189,333)(190,334)(191,341)
(192,339)(193,340)(194,338)(195,336)(196,337)(197,335)(198,342)(199,343)
(200,350)(201,348)(202,349)(203,347)(204,345)(205,346)(206,344)(207,351)
(208,352)(209,359)(210,357)(211,358)(212,356)(213,354)(214,355)(215,353)
(216,360)(217,388)(218,395)(219,393)(220,394)(221,392)(222,390)(223,391)
(224,389)(225,396)(226,379)(227,386)(228,384)(229,385)(230,383)(231,381)
(232,382)(233,380)(234,387)(235,370)(236,377)(237,375)(238,376)(239,374)
(240,372)(241,373)(242,371)(243,378)(244,361)(245,368)(246,366)(247,367)
(248,365)(249,363)(250,364)(251,362)(252,369)(253,424)(254,431)(255,429)
(256,430)(257,428)(258,426)(259,427)(260,425)(261,432)(262,415)(263,422)
(264,420)(265,421)(266,419)(267,417)(268,418)(269,416)(270,423)(271,406)
(272,413)(273,411)(274,412)(275,410)(276,408)(277,409)(278,407)(279,414)
(280,397)(281,404)(282,402)(283,403)(284,401)(285,399)(286,400)(287,398)
(288,405);
s1 := Sym(576)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)( 10, 13)( 11, 15)( 12, 14)
( 17, 18)( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)
( 35, 36)( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)( 42, 47)( 43, 52)
( 44, 54)( 45, 53)( 55, 67)( 56, 69)( 57, 68)( 58, 64)( 59, 66)( 60, 65)
( 61, 70)( 62, 72)( 63, 71)( 73, 94)( 74, 96)( 75, 95)( 76, 91)( 77, 93)
( 78, 92)( 79, 97)( 80, 99)( 81, 98)( 82,103)( 83,105)( 84,104)( 85,100)
( 86,102)( 87,101)( 88,106)( 89,108)( 90,107)(109,139)(110,141)(111,140)
(112,136)(113,138)(114,137)(115,142)(116,144)(117,143)(118,130)(119,132)
(120,131)(121,127)(122,129)(123,128)(124,133)(125,135)(126,134)(145,184)
(146,186)(147,185)(148,181)(149,183)(150,182)(151,187)(152,189)(153,188)
(154,193)(155,195)(156,194)(157,190)(158,192)(159,191)(160,196)(161,198)
(162,197)(163,202)(164,204)(165,203)(166,199)(167,201)(168,200)(169,205)
(170,207)(171,206)(172,211)(173,213)(174,212)(175,208)(176,210)(177,209)
(178,214)(179,216)(180,215)(217,274)(218,276)(219,275)(220,271)(221,273)
(222,272)(223,277)(224,279)(225,278)(226,283)(227,285)(228,284)(229,280)
(230,282)(231,281)(232,286)(233,288)(234,287)(235,256)(236,258)(237,257)
(238,253)(239,255)(240,254)(241,259)(242,261)(243,260)(244,265)(245,267)
(246,266)(247,262)(248,264)(249,263)(250,268)(251,270)(252,269)(289,364)
(290,366)(291,365)(292,361)(293,363)(294,362)(295,367)(296,369)(297,368)
(298,373)(299,375)(300,374)(301,370)(302,372)(303,371)(304,376)(305,378)
(306,377)(307,382)(308,384)(309,383)(310,379)(311,381)(312,380)(313,385)
(314,387)(315,386)(316,391)(317,393)(318,392)(319,388)(320,390)(321,389)
(322,394)(323,396)(324,395)(325,409)(326,411)(327,410)(328,406)(329,408)
(330,407)(331,412)(332,414)(333,413)(334,400)(335,402)(336,401)(337,397)
(338,399)(339,398)(340,403)(341,405)(342,404)(343,427)(344,429)(345,428)
(346,424)(347,426)(348,425)(349,430)(350,432)(351,431)(352,418)(353,420)
(354,419)(355,415)(356,417)(357,416)(358,421)(359,423)(360,422)(433,553)
(434,555)(435,554)(436,550)(437,552)(438,551)(439,556)(440,558)(441,557)
(442,544)(443,546)(444,545)(445,541)(446,543)(447,542)(448,547)(449,549)
(450,548)(451,571)(452,573)(453,572)(454,568)(455,570)(456,569)(457,574)
(458,576)(459,575)(460,562)(461,564)(462,563)(463,559)(464,561)(465,560)
(466,565)(467,567)(468,566)(469,517)(470,519)(471,518)(472,514)(473,516)
(474,515)(475,520)(476,522)(477,521)(478,508)(479,510)(480,509)(481,505)
(482,507)(483,506)(484,511)(485,513)(486,512)(487,535)(488,537)(489,536)
(490,532)(491,534)(492,533)(493,538)(494,540)(495,539)(496,526)(497,528)
(498,527)(499,523)(500,525)(501,524)(502,529)(503,531)(504,530);
s2 := Sym(576)!( 1,149)( 2,148)( 3,150)( 4,146)( 5,145)( 6,147)( 7,152)
( 8,151)( 9,153)( 10,158)( 11,157)( 12,159)( 13,155)( 14,154)( 15,156)
( 16,161)( 17,160)( 18,162)( 19,167)( 20,166)( 21,168)( 22,164)( 23,163)
( 24,165)( 25,170)( 26,169)( 27,171)( 28,176)( 29,175)( 30,177)( 31,173)
( 32,172)( 33,174)( 34,179)( 35,178)( 36,180)( 37,194)( 38,193)( 39,195)
( 40,191)( 41,190)( 42,192)( 43,197)( 44,196)( 45,198)( 46,185)( 47,184)
( 48,186)( 49,182)( 50,181)( 51,183)( 52,188)( 53,187)( 54,189)( 55,212)
( 56,211)( 57,213)( 58,209)( 59,208)( 60,210)( 61,215)( 62,214)( 63,216)
( 64,203)( 65,202)( 66,204)( 67,200)( 68,199)( 69,201)( 70,206)( 71,205)
( 72,207)( 73,230)( 74,229)( 75,231)( 76,227)( 77,226)( 78,228)( 79,233)
( 80,232)( 81,234)( 82,221)( 83,220)( 84,222)( 85,218)( 86,217)( 87,219)
( 88,224)( 89,223)( 90,225)( 91,248)( 92,247)( 93,249)( 94,245)( 95,244)
( 96,246)( 97,251)( 98,250)( 99,252)(100,239)(101,238)(102,240)(103,236)
(104,235)(105,237)(106,242)(107,241)(108,243)(109,257)(110,256)(111,258)
(112,254)(113,253)(114,255)(115,260)(116,259)(117,261)(118,266)(119,265)
(120,267)(121,263)(122,262)(123,264)(124,269)(125,268)(126,270)(127,275)
(128,274)(129,276)(130,272)(131,271)(132,273)(133,278)(134,277)(135,279)
(136,284)(137,283)(138,285)(139,281)(140,280)(141,282)(142,287)(143,286)
(144,288)(289,437)(290,436)(291,438)(292,434)(293,433)(294,435)(295,440)
(296,439)(297,441)(298,446)(299,445)(300,447)(301,443)(302,442)(303,444)
(304,449)(305,448)(306,450)(307,455)(308,454)(309,456)(310,452)(311,451)
(312,453)(313,458)(314,457)(315,459)(316,464)(317,463)(318,465)(319,461)
(320,460)(321,462)(322,467)(323,466)(324,468)(325,482)(326,481)(327,483)
(328,479)(329,478)(330,480)(331,485)(332,484)(333,486)(334,473)(335,472)
(336,474)(337,470)(338,469)(339,471)(340,476)(341,475)(342,477)(343,500)
(344,499)(345,501)(346,497)(347,496)(348,498)(349,503)(350,502)(351,504)
(352,491)(353,490)(354,492)(355,488)(356,487)(357,489)(358,494)(359,493)
(360,495)(361,518)(362,517)(363,519)(364,515)(365,514)(366,516)(367,521)
(368,520)(369,522)(370,509)(371,508)(372,510)(373,506)(374,505)(375,507)
(376,512)(377,511)(378,513)(379,536)(380,535)(381,537)(382,533)(383,532)
(384,534)(385,539)(386,538)(387,540)(388,527)(389,526)(390,528)(391,524)
(392,523)(393,525)(394,530)(395,529)(396,531)(397,545)(398,544)(399,546)
(400,542)(401,541)(402,543)(403,548)(404,547)(405,549)(406,554)(407,553)
(408,555)(409,551)(410,550)(411,552)(412,557)(413,556)(414,558)(415,563)
(416,562)(417,564)(418,560)(419,559)(420,561)(421,566)(422,565)(423,567)
(424,572)(425,571)(426,573)(427,569)(428,568)(429,570)(430,575)(431,574)
(432,576);
poly := sub<Sym(576)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope