include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {48,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {48,6,2}*1152a
if this polytope has a name.
Group : SmallGroup(1152,133450)
Rank : 4
Schlafli Type : {48,6,2}
Number of vertices, edges, etc : 48, 144, 6, 2
Order of s0s1s2s3 : 48
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {24,6,2}*576c
3-fold quotients : {16,6,2}*384
4-fold quotients : {12,6,2}*288c
6-fold quotients : {8,6,2}*192
8-fold quotients : {6,6,2}*144b
9-fold quotients : {16,2,2}*128
12-fold quotients : {4,6,2}*96a
16-fold quotients : {6,3,2}*72
18-fold quotients : {8,2,2}*64
24-fold quotients : {2,6,2}*48
36-fold quotients : {4,2,2}*32
48-fold quotients : {2,3,2}*24
72-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)( 11, 12)( 14, 15)( 17, 18)( 19, 28)( 20, 30)
( 21, 29)( 22, 31)( 23, 33)( 24, 32)( 25, 34)( 26, 36)( 27, 35)( 37, 55)
( 38, 57)( 39, 56)( 40, 58)( 41, 60)( 42, 59)( 43, 61)( 44, 63)( 45, 62)
( 46, 64)( 47, 66)( 48, 65)( 49, 67)( 50, 69)( 51, 68)( 52, 70)( 53, 72)
( 54, 71)( 73,109)( 74,111)( 75,110)( 76,112)( 77,114)( 78,113)( 79,115)
( 80,117)( 81,116)( 82,118)( 83,120)( 84,119)( 85,121)( 86,123)( 87,122)
( 88,124)( 89,126)( 90,125)( 91,136)( 92,138)( 93,137)( 94,139)( 95,141)
( 96,140)( 97,142)( 98,144)( 99,143)(100,127)(101,129)(102,128)(103,130)
(104,132)(105,131)(106,133)(107,135)(108,134);;
s1 := ( 1, 74)( 2, 73)( 3, 75)( 4, 80)( 5, 79)( 6, 81)( 7, 77)( 8, 76)
( 9, 78)( 10, 83)( 11, 82)( 12, 84)( 13, 89)( 14, 88)( 15, 90)( 16, 86)
( 17, 85)( 18, 87)( 19,101)( 20,100)( 21,102)( 22,107)( 23,106)( 24,108)
( 25,104)( 26,103)( 27,105)( 28, 92)( 29, 91)( 30, 93)( 31, 98)( 32, 97)
( 33, 99)( 34, 95)( 35, 94)( 36, 96)( 37,128)( 38,127)( 39,129)( 40,134)
( 41,133)( 42,135)( 43,131)( 44,130)( 45,132)( 46,137)( 47,136)( 48,138)
( 49,143)( 50,142)( 51,144)( 52,140)( 53,139)( 54,141)( 55,110)( 56,109)
( 57,111)( 58,116)( 59,115)( 60,117)( 61,113)( 62,112)( 63,114)( 64,119)
( 65,118)( 66,120)( 67,125)( 68,124)( 69,126)( 70,122)( 71,121)( 72,123);;
s2 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)( 10, 13)( 11, 15)( 12, 14)( 17, 18)
( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)( 35, 36)
( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)( 53, 54)
( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 67)( 65, 69)( 66, 68)( 71, 72)
( 73, 76)( 74, 78)( 75, 77)( 80, 81)( 82, 85)( 83, 87)( 84, 86)( 89, 90)
( 91, 94)( 92, 96)( 93, 95)( 98, 99)(100,103)(101,105)(102,104)(107,108)
(109,112)(110,114)(111,113)(116,117)(118,121)(119,123)(120,122)(125,126)
(127,130)(128,132)(129,131)(134,135)(136,139)(137,141)(138,140)(143,144);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(146)!( 2, 3)( 5, 6)( 8, 9)( 11, 12)( 14, 15)( 17, 18)( 19, 28)
( 20, 30)( 21, 29)( 22, 31)( 23, 33)( 24, 32)( 25, 34)( 26, 36)( 27, 35)
( 37, 55)( 38, 57)( 39, 56)( 40, 58)( 41, 60)( 42, 59)( 43, 61)( 44, 63)
( 45, 62)( 46, 64)( 47, 66)( 48, 65)( 49, 67)( 50, 69)( 51, 68)( 52, 70)
( 53, 72)( 54, 71)( 73,109)( 74,111)( 75,110)( 76,112)( 77,114)( 78,113)
( 79,115)( 80,117)( 81,116)( 82,118)( 83,120)( 84,119)( 85,121)( 86,123)
( 87,122)( 88,124)( 89,126)( 90,125)( 91,136)( 92,138)( 93,137)( 94,139)
( 95,141)( 96,140)( 97,142)( 98,144)( 99,143)(100,127)(101,129)(102,128)
(103,130)(104,132)(105,131)(106,133)(107,135)(108,134);
s1 := Sym(146)!( 1, 74)( 2, 73)( 3, 75)( 4, 80)( 5, 79)( 6, 81)( 7, 77)
( 8, 76)( 9, 78)( 10, 83)( 11, 82)( 12, 84)( 13, 89)( 14, 88)( 15, 90)
( 16, 86)( 17, 85)( 18, 87)( 19,101)( 20,100)( 21,102)( 22,107)( 23,106)
( 24,108)( 25,104)( 26,103)( 27,105)( 28, 92)( 29, 91)( 30, 93)( 31, 98)
( 32, 97)( 33, 99)( 34, 95)( 35, 94)( 36, 96)( 37,128)( 38,127)( 39,129)
( 40,134)( 41,133)( 42,135)( 43,131)( 44,130)( 45,132)( 46,137)( 47,136)
( 48,138)( 49,143)( 50,142)( 51,144)( 52,140)( 53,139)( 54,141)( 55,110)
( 56,109)( 57,111)( 58,116)( 59,115)( 60,117)( 61,113)( 62,112)( 63,114)
( 64,119)( 65,118)( 66,120)( 67,125)( 68,124)( 69,126)( 70,122)( 71,121)
( 72,123);
s2 := Sym(146)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)( 10, 13)( 11, 15)( 12, 14)
( 17, 18)( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 28, 31)( 29, 33)( 30, 32)
( 35, 36)( 37, 40)( 38, 42)( 39, 41)( 44, 45)( 46, 49)( 47, 51)( 48, 50)
( 53, 54)( 55, 58)( 56, 60)( 57, 59)( 62, 63)( 64, 67)( 65, 69)( 66, 68)
( 71, 72)( 73, 76)( 74, 78)( 75, 77)( 80, 81)( 82, 85)( 83, 87)( 84, 86)
( 89, 90)( 91, 94)( 92, 96)( 93, 95)( 98, 99)(100,103)(101,105)(102,104)
(107,108)(109,112)(110,114)(111,113)(116,117)(118,121)(119,123)(120,122)
(125,126)(127,130)(128,132)(129,131)(134,135)(136,139)(137,141)(138,140)
(143,144);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope