include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,4,2,3,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,4,2,3,2}*1152a
if this polytope has a name.
Group : SmallGroup(1152,134264)
Rank : 6
Schlafli Type : {12,4,2,3,2}
Number of vertices, edges, etc : 12, 24, 4, 3, 3, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,2,2,3,2}*576, {6,4,2,3,2}*576a
3-fold quotients : {4,4,2,3,2}*384
4-fold quotients : {6,2,2,3,2}*288
6-fold quotients : {2,4,2,3,2}*192, {4,2,2,3,2}*192
8-fold quotients : {3,2,2,3,2}*144
12-fold quotients : {2,2,2,3,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6,10)( 8,12)( 9,11)(15,20)(16,19)(17,18)(21,22)(23,24);;
s1 := ( 1, 8)( 2, 4)( 3,17)( 5, 9)( 6,23)( 7,11)(10,21)(12,18)(13,19)(14,15)
(16,24)(20,22);;
s2 := ( 2, 6)( 3,10)( 8,15)( 9,16)(11,19)(12,20);;
s3 := (26,27);;
s4 := (25,26);;
s5 := (28,29);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!( 2, 3)( 4, 5)( 6,10)( 8,12)( 9,11)(15,20)(16,19)(17,18)(21,22)
(23,24);
s1 := Sym(29)!( 1, 8)( 2, 4)( 3,17)( 5, 9)( 6,23)( 7,11)(10,21)(12,18)(13,19)
(14,15)(16,24)(20,22);
s2 := Sym(29)!( 2, 6)( 3,10)( 8,15)( 9,16)(11,19)(12,20);
s3 := Sym(29)!(26,27);
s4 := Sym(29)!(25,26);
s5 := Sym(29)!(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s3*s4*s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope