include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,12,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,4,2}*1152c
if this polytope has a name.
Group : SmallGroup(1152,134267)
Rank : 5
Schlafli Type : {6,12,4,2}
Number of vertices, edges, etc : 6, 36, 24, 4, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6,4,2}*576c, {6,12,2,2}*576c
3-fold quotients : {6,4,4,2}*384
4-fold quotients : {3,6,4,2}*288, {6,6,2,2}*288c
6-fold quotients : {6,2,4,2}*192, {6,4,2,2}*192a
8-fold quotients : {3,6,2,2}*144
9-fold quotients : {2,4,4,2}*128
12-fold quotients : {3,2,4,2}*96, {6,2,2,2}*96
18-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
24-fold quotients : {3,2,2,2}*48
36-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)( 33, 35)
( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)( 51, 53)
( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)( 69, 71)
( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)( 87, 89)
( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)(105,107)
(110,111)(112,115)(113,117)(114,116)(119,120)(121,124)(122,126)(123,125)
(128,129)(130,133)(131,135)(132,134)(137,138)(139,142)(140,144)(141,143);;
s1 := ( 1, 77)( 2, 76)( 3, 78)( 4, 74)( 5, 73)( 6, 75)( 7, 80)( 8, 79)
( 9, 81)( 10, 86)( 11, 85)( 12, 87)( 13, 83)( 14, 82)( 15, 84)( 16, 89)
( 17, 88)( 18, 90)( 19, 95)( 20, 94)( 21, 96)( 22, 92)( 23, 91)( 24, 93)
( 25, 98)( 26, 97)( 27, 99)( 28,104)( 29,103)( 30,105)( 31,101)( 32,100)
( 33,102)( 34,107)( 35,106)( 36,108)( 37,113)( 38,112)( 39,114)( 40,110)
( 41,109)( 42,111)( 43,116)( 44,115)( 45,117)( 46,122)( 47,121)( 48,123)
( 49,119)( 50,118)( 51,120)( 52,125)( 53,124)( 54,126)( 55,131)( 56,130)
( 57,132)( 58,128)( 59,127)( 60,129)( 61,134)( 62,133)( 63,135)( 64,140)
( 65,139)( 66,141)( 67,137)( 68,136)( 69,138)( 70,143)( 71,142)( 72,144);;
s2 := ( 2, 3)( 5, 6)( 8, 9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 23, 24)
( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 37, 55)( 38, 57)( 39, 56)( 40, 58)
( 41, 60)( 42, 59)( 43, 61)( 44, 63)( 45, 62)( 46, 64)( 47, 66)( 48, 65)
( 49, 67)( 50, 69)( 51, 68)( 52, 70)( 53, 72)( 54, 71)( 73, 82)( 74, 84)
( 75, 83)( 76, 85)( 77, 87)( 78, 86)( 79, 88)( 80, 90)( 81, 89)( 91,100)
( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)( 99,107)
(109,136)(110,138)(111,137)(112,139)(113,141)(114,140)(115,142)(116,144)
(117,143)(118,127)(119,129)(120,128)(121,130)(122,132)(123,131)(124,133)
(125,135)(126,134);;
s3 := ( 1, 37)( 2, 38)( 3, 39)( 4, 40)( 5, 41)( 6, 42)( 7, 43)( 8, 44)
( 9, 45)( 10, 46)( 11, 47)( 12, 48)( 13, 49)( 14, 50)( 15, 51)( 16, 52)
( 17, 53)( 18, 54)( 19, 55)( 20, 56)( 21, 57)( 22, 58)( 23, 59)( 24, 60)
( 25, 61)( 26, 62)( 27, 63)( 28, 64)( 29, 65)( 30, 66)( 31, 67)( 32, 68)
( 33, 69)( 34, 70)( 35, 71)( 36, 72)( 73,109)( 74,110)( 75,111)( 76,112)
( 77,113)( 78,114)( 79,115)( 80,116)( 81,117)( 82,118)( 83,119)( 84,120)
( 85,121)( 86,122)( 87,123)( 88,124)( 89,125)( 90,126)( 91,127)( 92,128)
( 93,129)( 94,130)( 95,131)( 96,132)( 97,133)( 98,134)( 99,135)(100,136)
(101,137)(102,138)(103,139)(104,140)(105,141)(106,142)(107,143)(108,144);;
s4 := (145,146);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(146)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)
( 51, 53)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)
( 69, 71)( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)
( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)
(105,107)(110,111)(112,115)(113,117)(114,116)(119,120)(121,124)(122,126)
(123,125)(128,129)(130,133)(131,135)(132,134)(137,138)(139,142)(140,144)
(141,143);
s1 := Sym(146)!( 1, 77)( 2, 76)( 3, 78)( 4, 74)( 5, 73)( 6, 75)( 7, 80)
( 8, 79)( 9, 81)( 10, 86)( 11, 85)( 12, 87)( 13, 83)( 14, 82)( 15, 84)
( 16, 89)( 17, 88)( 18, 90)( 19, 95)( 20, 94)( 21, 96)( 22, 92)( 23, 91)
( 24, 93)( 25, 98)( 26, 97)( 27, 99)( 28,104)( 29,103)( 30,105)( 31,101)
( 32,100)( 33,102)( 34,107)( 35,106)( 36,108)( 37,113)( 38,112)( 39,114)
( 40,110)( 41,109)( 42,111)( 43,116)( 44,115)( 45,117)( 46,122)( 47,121)
( 48,123)( 49,119)( 50,118)( 51,120)( 52,125)( 53,124)( 54,126)( 55,131)
( 56,130)( 57,132)( 58,128)( 59,127)( 60,129)( 61,134)( 62,133)( 63,135)
( 64,140)( 65,139)( 66,141)( 67,137)( 68,136)( 69,138)( 70,143)( 71,142)
( 72,144);
s2 := Sym(146)!( 2, 3)( 5, 6)( 8, 9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)
( 23, 24)( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 37, 55)( 38, 57)( 39, 56)
( 40, 58)( 41, 60)( 42, 59)( 43, 61)( 44, 63)( 45, 62)( 46, 64)( 47, 66)
( 48, 65)( 49, 67)( 50, 69)( 51, 68)( 52, 70)( 53, 72)( 54, 71)( 73, 82)
( 74, 84)( 75, 83)( 76, 85)( 77, 87)( 78, 86)( 79, 88)( 80, 90)( 81, 89)
( 91,100)( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)
( 99,107)(109,136)(110,138)(111,137)(112,139)(113,141)(114,140)(115,142)
(116,144)(117,143)(118,127)(119,129)(120,128)(121,130)(122,132)(123,131)
(124,133)(125,135)(126,134);
s3 := Sym(146)!( 1, 37)( 2, 38)( 3, 39)( 4, 40)( 5, 41)( 6, 42)( 7, 43)
( 8, 44)( 9, 45)( 10, 46)( 11, 47)( 12, 48)( 13, 49)( 14, 50)( 15, 51)
( 16, 52)( 17, 53)( 18, 54)( 19, 55)( 20, 56)( 21, 57)( 22, 58)( 23, 59)
( 24, 60)( 25, 61)( 26, 62)( 27, 63)( 28, 64)( 29, 65)( 30, 66)( 31, 67)
( 32, 68)( 33, 69)( 34, 70)( 35, 71)( 36, 72)( 73,109)( 74,110)( 75,111)
( 76,112)( 77,113)( 78,114)( 79,115)( 80,116)( 81,117)( 82,118)( 83,119)
( 84,120)( 85,121)( 86,122)( 87,123)( 88,124)( 89,125)( 90,126)( 91,127)
( 92,128)( 93,129)( 94,130)( 95,131)( 96,132)( 97,133)( 98,134)( 99,135)
(100,136)(101,137)(102,138)(103,139)(104,140)(105,141)(106,142)(107,143)
(108,144);
s4 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope