Polytope of Type {2,4,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,4,6}*1152
if this polytope has a name.
Group : SmallGroup(1152,134274)
Rank : 5
Schlafli Type : {2,4,4,6}
Number of vertices, edges, etc : 2, 4, 24, 36, 18
Order of s0s1s2s3s4 : 4
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,4,6}*576, {2,2,4,6}*576
   4-fold quotients : {2,2,4,6}*288
   9-fold quotients : {2,4,4,2}*128
   18-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
   36-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)(12,30)
(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(39,57)(40,58)(41,59)
(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)
(53,71)(54,72)(55,73)(56,74);;
s2 := ( 4, 6)( 5, 9)( 8,10)(13,15)(14,18)(17,19)(21,30)(22,33)(23,36)(24,31)
(25,34)(26,37)(27,32)(28,35)(29,38)(40,42)(41,45)(44,46)(49,51)(50,54)(53,55)
(57,66)(58,69)(59,72)(60,67)(61,70)(62,73)(63,68)(64,71)(65,74);;
s3 := ( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29)(33,36)
(34,37)(35,38)(42,45)(43,46)(44,47)(51,54)(52,55)(53,56)(60,63)(61,64)(62,65)
(69,72)(70,73)(71,74);;
s4 := ( 3,43)( 4,42)( 5,44)( 6,40)( 7,39)( 8,41)( 9,46)(10,45)(11,47)(12,52)
(13,51)(14,53)(15,49)(16,48)(17,50)(18,55)(19,54)(20,56)(21,61)(22,60)(23,62)
(24,58)(25,57)(26,59)(27,64)(28,63)(29,65)(30,70)(31,69)(32,71)(33,67)(34,66)
(35,68)(36,73)(37,72)(38,74);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(74)!(1,2);
s1 := Sym(74)!( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)
(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(39,57)(40,58)
(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)
(52,70)(53,71)(54,72)(55,73)(56,74);
s2 := Sym(74)!( 4, 6)( 5, 9)( 8,10)(13,15)(14,18)(17,19)(21,30)(22,33)(23,36)
(24,31)(25,34)(26,37)(27,32)(28,35)(29,38)(40,42)(41,45)(44,46)(49,51)(50,54)
(53,55)(57,66)(58,69)(59,72)(60,67)(61,70)(62,73)(63,68)(64,71)(65,74);
s3 := Sym(74)!( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29)
(33,36)(34,37)(35,38)(42,45)(43,46)(44,47)(51,54)(52,55)(53,56)(60,63)(61,64)
(62,65)(69,72)(70,73)(71,74);
s4 := Sym(74)!( 3,43)( 4,42)( 5,44)( 6,40)( 7,39)( 8,41)( 9,46)(10,45)(11,47)
(12,52)(13,51)(14,53)(15,49)(16,48)(17,50)(18,55)(19,54)(20,56)(21,61)(22,60)
(23,62)(24,58)(25,57)(26,59)(27,64)(28,63)(29,65)(30,70)(31,69)(32,71)(33,67)
(34,66)(35,68)(36,73)(37,72)(38,74);
poly := sub<Sym(74)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope