include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,2,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,2,12}*1152a
if this polytope has a name.
Group : SmallGroup(1152,136342)
Rank : 5
Schlafli Type : {4,6,2,12}
Number of vertices, edges, etc : 4, 12, 6, 12, 12
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,2,12}*576, {4,6,2,6}*576a
3-fold quotients : {4,2,2,12}*384, {4,6,2,4}*384a
4-fold quotients : {2,3,2,12}*288, {4,6,2,3}*288a, {2,6,2,6}*288
6-fold quotients : {2,2,2,12}*192, {2,6,2,4}*192, {4,2,2,6}*192, {4,6,2,2}*192a
8-fold quotients : {2,3,2,6}*144, {2,6,2,3}*144
9-fold quotients : {4,2,2,4}*128
12-fold quotients : {2,3,2,4}*96, {4,2,2,3}*96, {2,2,2,6}*96, {2,6,2,2}*96
16-fold quotients : {2,3,2,3}*72
18-fold quotients : {2,2,2,4}*64, {4,2,2,2}*64
24-fold quotients : {2,2,2,3}*48, {2,3,2,2}*48
36-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 6, 9)( 7,10);;
s1 := ( 1, 2)( 3, 7)( 4, 6)( 5, 8)( 9,12)(10,11);;
s2 := ( 1, 3)( 2, 6)( 5, 9)( 8,11);;
s3 := (14,15)(16,17)(19,22)(20,21)(23,24);;
s4 := (13,19)(14,16)(15,23)(17,20)(18,21)(22,24);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(24)!( 2, 5)( 6, 9)( 7,10);
s1 := Sym(24)!( 1, 2)( 3, 7)( 4, 6)( 5, 8)( 9,12)(10,11);
s2 := Sym(24)!( 1, 3)( 2, 6)( 5, 9)( 8,11);
s3 := Sym(24)!(14,15)(16,17)(19,22)(20,21)(23,24);
s4 := Sym(24)!(13,19)(14,16)(15,23)(17,20)(18,21)(22,24);
poly := sub<Sym(24)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope