include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,12,2,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,2,12}*1152
if this polytope has a name.
Group : SmallGroup(1152,136366)
Rank : 5
Schlafli Type : {2,12,2,12}
Number of vertices, edges, etc : 2, 12, 12, 12, 12
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,2,12}*576, {2,12,2,6}*576
3-fold quotients : {2,4,2,12}*384, {2,12,2,4}*384
4-fold quotients : {2,3,2,12}*288, {2,12,2,3}*288, {2,6,2,6}*288
6-fold quotients : {2,2,2,12}*192, {2,12,2,2}*192, {2,4,2,6}*192, {2,6,2,4}*192
8-fold quotients : {2,3,2,6}*144, {2,6,2,3}*144
9-fold quotients : {2,4,2,4}*128
12-fold quotients : {2,3,2,4}*96, {2,4,2,3}*96, {2,2,2,6}*96, {2,6,2,2}*96
16-fold quotients : {2,3,2,3}*72
18-fold quotients : {2,2,2,4}*64, {2,4,2,2}*64
24-fold quotients : {2,2,2,3}*48, {2,3,2,2}*48
36-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 9,12)(10,11)(13,14);;
s2 := ( 3, 9)( 4, 6)( 5,13)( 7,10)( 8,11)(12,14);;
s3 := (16,17)(18,19)(21,24)(22,23)(25,26);;
s4 := (15,21)(16,18)(17,25)(19,22)(20,23)(24,26);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(26)!(1,2);
s1 := Sym(26)!( 4, 5)( 6, 7)( 9,12)(10,11)(13,14);
s2 := Sym(26)!( 3, 9)( 4, 6)( 5,13)( 7,10)( 8,11)(12,14);
s3 := Sym(26)!(16,17)(18,19)(21,24)(22,23)(25,26);
s4 := Sym(26)!(15,21)(16,18)(17,25)(19,22)(20,23)(24,26);
poly := sub<Sym(26)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope