Polytope of Type {4,6,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,4,2}*1152b
if this polytope has a name.
Group : SmallGroup(1152,136369)
Rank : 5
Schlafli Type : {4,6,4,2}
Number of vertices, edges, etc : 4, 36, 36, 12, 2
Order of s0s1s2s3s4 : 4
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,4,2}*576
   4-fold quotients : {2,6,4,2}*288
   9-fold quotients : {4,2,4,2}*128
   18-fold quotients : {2,2,4,2}*64, {4,2,2,2}*64
   36-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,19)( 2,20)( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)
(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36);;
s1 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(19,28)(20,30)
(21,29)(22,34)(23,36)(24,35)(25,31)(26,33)(27,32);;
s2 := ( 1, 4)( 2, 5)( 3, 6)(10,13)(11,14)(12,15)(19,22)(20,23)(21,24)(28,31)
(29,32)(30,33);;
s3 := ( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(20,22)(21,25)(24,26)(29,31)
(30,34)(33,35);;
s4 := (37,38);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(38)!( 1,19)( 2,20)( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)
(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36);
s1 := Sym(38)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(19,28)
(20,30)(21,29)(22,34)(23,36)(24,35)(25,31)(26,33)(27,32);
s2 := Sym(38)!( 1, 4)( 2, 5)( 3, 6)(10,13)(11,14)(12,15)(19,22)(20,23)(21,24)
(28,31)(29,32)(30,33);
s3 := Sym(38)!( 2, 4)( 3, 7)( 6, 8)(11,13)(12,16)(15,17)(20,22)(21,25)(24,26)
(29,31)(30,34)(33,35);
s4 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope