Polytope of Type {8,2,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,2,6,6}*1152a
if this polytope has a name.
Group : SmallGroup(1152,152548)
Rank : 5
Schlafli Type : {8,2,6,6}
Number of vertices, edges, etc : 8, 8, 6, 18, 6
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,2,6,6}*576a
   3-fold quotients : {8,2,2,6}*384, {8,2,6,2}*384
   4-fold quotients : {2,2,6,6}*288a
   6-fold quotients : {8,2,2,3}*192, {8,2,3,2}*192, {4,2,2,6}*192, {4,2,6,2}*192
   9-fold quotients : {8,2,2,2}*128
   12-fold quotients : {4,2,2,3}*96, {4,2,3,2}*96, {2,2,2,6}*96, {2,2,6,2}*96
   18-fold quotients : {4,2,2,2}*64
   24-fold quotients : {2,2,2,3}*48, {2,2,3,2}*48
   36-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (13,14)(17,18)(19,20)(21,22)(23,24)(25,26);;
s3 := ( 9,13)(10,17)(11,21)(12,19)(15,25)(16,23)(20,22)(24,26);;
s4 := ( 9,15)(10,11)(12,16)(13,23)(14,24)(17,19)(18,20)(21,25)(22,26);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(26)!(2,3)(4,5)(6,7);
s1 := Sym(26)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(26)!(13,14)(17,18)(19,20)(21,22)(23,24)(25,26);
s3 := Sym(26)!( 9,13)(10,17)(11,21)(12,19)(15,25)(16,23)(20,22)(24,26);
s4 := Sym(26)!( 9,15)(10,11)(12,16)(13,23)(14,24)(17,19)(18,20)(21,25)(22,26);
poly := sub<Sym(26)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope