Polytope of Type {2,24,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,24,6,2}*1152a
if this polytope has a name.
Group : SmallGroup(1152,152550)
Rank : 5
Schlafli Type : {2,24,6,2}
Number of vertices, edges, etc : 2, 24, 72, 6, 2
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,12,6,2}*576c
   3-fold quotients : {2,8,6,2}*384
   4-fold quotients : {2,6,6,2}*288b
   6-fold quotients : {2,4,6,2}*192a
   8-fold quotients : {2,6,3,2}*144
   9-fold quotients : {2,8,2,2}*128
   12-fold quotients : {2,2,6,2}*96
   18-fold quotients : {2,4,2,2}*64
   24-fold quotients : {2,2,3,2}*48
   36-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(21,30)(22,31)(23,32)(24,36)
(25,37)(26,38)(27,33)(28,34)(29,35)(39,57)(40,58)(41,59)(42,63)(43,64)(44,65)
(45,60)(46,61)(47,62)(48,66)(49,67)(50,68)(51,72)(52,73)(53,74)(54,69)(55,70)
(56,71);;
s2 := ( 3,42)( 4,44)( 5,43)( 6,39)( 7,41)( 8,40)( 9,45)(10,47)(11,46)(12,51)
(13,53)(14,52)(15,48)(16,50)(17,49)(18,54)(19,56)(20,55)(21,69)(22,71)(23,70)
(24,66)(25,68)(26,67)(27,72)(28,74)(29,73)(30,60)(31,62)(32,61)(33,57)(34,59)
(35,58)(36,63)(37,65)(38,64);;
s3 := ( 3, 4)( 6,10)( 7, 9)( 8,11)(12,13)(15,19)(16,18)(17,20)(21,22)(24,28)
(25,27)(26,29)(30,31)(33,37)(34,36)(35,38)(39,40)(42,46)(43,45)(44,47)(48,49)
(51,55)(52,54)(53,56)(57,58)(60,64)(61,63)(62,65)(66,67)(69,73)(70,72)
(71,74);;
s4 := (75,76);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(76)!(1,2);
s1 := Sym(76)!( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(21,30)(22,31)(23,32)
(24,36)(25,37)(26,38)(27,33)(28,34)(29,35)(39,57)(40,58)(41,59)(42,63)(43,64)
(44,65)(45,60)(46,61)(47,62)(48,66)(49,67)(50,68)(51,72)(52,73)(53,74)(54,69)
(55,70)(56,71);
s2 := Sym(76)!( 3,42)( 4,44)( 5,43)( 6,39)( 7,41)( 8,40)( 9,45)(10,47)(11,46)
(12,51)(13,53)(14,52)(15,48)(16,50)(17,49)(18,54)(19,56)(20,55)(21,69)(22,71)
(23,70)(24,66)(25,68)(26,67)(27,72)(28,74)(29,73)(30,60)(31,62)(32,61)(33,57)
(34,59)(35,58)(36,63)(37,65)(38,64);
s3 := Sym(76)!( 3, 4)( 6,10)( 7, 9)( 8,11)(12,13)(15,19)(16,18)(17,20)(21,22)
(24,28)(25,27)(26,29)(30,31)(33,37)(34,36)(35,38)(39,40)(42,46)(43,45)(44,47)
(48,49)(51,55)(52,54)(53,56)(57,58)(60,64)(61,63)(62,65)(66,67)(69,73)(70,72)
(71,74);
s4 := Sym(76)!(75,76);
poly := sub<Sym(76)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2, 
s3*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope