include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,18,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,18,4,2}*1152a
if this polytope has a name.
Group : SmallGroup(1152,153166)
Rank : 6
Schlafli Type : {2,2,18,4,2}
Number of vertices, edges, etc : 2, 2, 18, 36, 4, 2
Order of s0s1s2s3s4s5 : 36
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,18,2,2}*576
3-fold quotients : {2,2,6,4,2}*384a
4-fold quotients : {2,2,9,2,2}*288
6-fold quotients : {2,2,6,2,2}*192
9-fold quotients : {2,2,2,4,2}*128
12-fold quotients : {2,2,3,2,2}*96
18-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 8,12)( 9,11)(10,13)(15,16)(17,21)(18,20)(19,22)(24,25)(26,30)
(27,29)(28,31)(33,34)(35,39)(36,38)(37,40);;
s3 := ( 5, 8)( 6,10)( 7, 9)(11,12)(14,17)(15,19)(16,18)(20,21)(23,35)(24,37)
(25,36)(26,32)(27,34)(28,33)(29,39)(30,38)(31,40);;
s4 := ( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)(12,30)(13,31)(14,32)
(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40);;
s5 := (41,42);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(42)!(1,2);
s1 := Sym(42)!(3,4);
s2 := Sym(42)!( 6, 7)( 8,12)( 9,11)(10,13)(15,16)(17,21)(18,20)(19,22)(24,25)
(26,30)(27,29)(28,31)(33,34)(35,39)(36,38)(37,40);
s3 := Sym(42)!( 5, 8)( 6,10)( 7, 9)(11,12)(14,17)(15,19)(16,18)(20,21)(23,35)
(24,37)(25,36)(26,32)(27,34)(28,33)(29,39)(30,38)(31,40);
s4 := Sym(42)!( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)(12,30)(13,31)
(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40);
s5 := Sym(42)!(41,42);
poly := sub<Sym(42)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope