include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,18,4,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,18,4,2,2}*1152a
if this polytope has a name.
Group : SmallGroup(1152,153166)
Rank : 6
Schlafli Type : {2,18,4,2,2}
Number of vertices, edges, etc : 2, 18, 36, 4, 2, 2
Order of s0s1s2s3s4s5 : 36
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,18,2,2,2}*576
3-fold quotients : {2,6,4,2,2}*384a
4-fold quotients : {2,9,2,2,2}*288
6-fold quotients : {2,6,2,2,2}*192
9-fold quotients : {2,2,4,2,2}*128
12-fold quotients : {2,3,2,2,2}*96
18-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6,10)( 7, 9)( 8,11)(13,14)(15,19)(16,18)(17,20)(22,23)(24,28)
(25,27)(26,29)(31,32)(33,37)(34,36)(35,38);;
s2 := ( 3, 6)( 4, 8)( 5, 7)( 9,10)(12,15)(13,17)(14,16)(18,19)(21,33)(22,35)
(23,34)(24,30)(25,32)(26,31)(27,37)(28,36)(29,38);;
s3 := ( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)(12,30)
(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38);;
s4 := (39,40);;
s5 := (41,42);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(42)!(1,2);
s1 := Sym(42)!( 4, 5)( 6,10)( 7, 9)( 8,11)(13,14)(15,19)(16,18)(17,20)(22,23)
(24,28)(25,27)(26,29)(31,32)(33,37)(34,36)(35,38);
s2 := Sym(42)!( 3, 6)( 4, 8)( 5, 7)( 9,10)(12,15)(13,17)(14,16)(18,19)(21,33)
(22,35)(23,34)(24,30)(25,32)(26,31)(27,37)(28,36)(29,38);
s3 := Sym(42)!( 3,21)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)
(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38);
s4 := Sym(42)!(39,40);
s5 := Sym(42)!(41,42);
poly := sub<Sym(42)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope