include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,4,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,4,6,6}*1152a
if this polytope has a name.
Group : SmallGroup(1152,153175)
Rank : 6
Schlafli Type : {2,2,4,6,6}
Number of vertices, edges, etc : 2, 2, 4, 12, 18, 6
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,6,6}*576a
3-fold quotients : {2,2,4,2,6}*384, {2,2,4,6,2}*384a
6-fold quotients : {2,2,4,2,3}*192, {2,2,2,2,6}*192, {2,2,2,6,2}*192
9-fold quotients : {2,2,4,2,2}*128
12-fold quotients : {2,2,2,2,3}*96, {2,2,2,3,2}*96
18-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (23,32)(24,33)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40);;
s3 := ( 5,23)( 6,24)( 7,25)( 8,29)( 9,30)(10,31)(11,26)(12,27)(13,28)(14,32)
(15,33)(16,34)(17,38)(18,39)(19,40)(20,35)(21,36)(22,37);;
s4 := ( 5, 8)( 6,10)( 7, 9)(12,13)(14,17)(15,19)(16,18)(21,22)(23,26)(24,28)
(25,27)(30,31)(32,35)(33,37)(34,36)(39,40);;
s5 := ( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)(32,33)
(35,36)(38,39);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s5*s4*s3*s4*s5*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(40)!(1,2);
s1 := Sym(40)!(3,4);
s2 := Sym(40)!(23,32)(24,33)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40);
s3 := Sym(40)!( 5,23)( 6,24)( 7,25)( 8,29)( 9,30)(10,31)(11,26)(12,27)(13,28)
(14,32)(15,33)(16,34)(17,38)(18,39)(19,40)(20,35)(21,36)(22,37);
s4 := Sym(40)!( 5, 8)( 6,10)( 7, 9)(12,13)(14,17)(15,19)(16,18)(21,22)(23,26)
(24,28)(25,27)(30,31)(32,35)(33,37)(34,36)(39,40);
s5 := Sym(40)!( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39);
poly := sub<Sym(40)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s5*s4*s3*s4*s5*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;
to this polytope