include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,6,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,6,2,2}*1152a
if this polytope has a name.
Group : SmallGroup(1152,153175)
Rank : 6
Schlafli Type : {4,6,6,2,2}
Number of vertices, edges, etc : 4, 12, 18, 6, 2, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,6,2,2}*576a
3-fold quotients : {4,2,6,2,2}*384, {4,6,2,2,2}*384a
6-fold quotients : {4,2,3,2,2}*192, {2,2,6,2,2}*192, {2,6,2,2,2}*192
9-fold quotients : {4,2,2,2,2}*128
12-fold quotients : {2,2,3,2,2}*96, {2,3,2,2,2}*96
18-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36);;
s1 := ( 1,19)( 2,20)( 3,21)( 4,25)( 5,26)( 6,27)( 7,22)( 8,23)( 9,24)(10,28)
(11,29)(12,30)(13,34)(14,35)(15,36)(16,31)(17,32)(18,33);;
s2 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)(20,24)
(21,23)(26,27)(28,31)(29,33)(30,32)(35,36);;
s3 := ( 1, 2)( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)(28,29)
(31,32)(34,35);;
s4 := (37,38);;
s5 := (39,40);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(40)!(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36);
s1 := Sym(40)!( 1,19)( 2,20)( 3,21)( 4,25)( 5,26)( 6,27)( 7,22)( 8,23)( 9,24)
(10,28)(11,29)(12,30)(13,34)(14,35)(15,36)(16,31)(17,32)(18,33);
s2 := Sym(40)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)
(20,24)(21,23)(26,27)(28,31)(29,33)(30,32)(35,36);
s3 := Sym(40)!( 1, 2)( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)
(28,29)(31,32)(34,35);
s4 := Sym(40)!(37,38);
s5 := Sym(40)!(39,40);
poly := sub<Sym(40)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope