Polytope of Type {2,2,6,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,6,4,6}*1152
if this polytope has a name.
Group : SmallGroup(1152,153175)
Rank : 6
Schlafli Type : {2,2,6,4,6}
Number of vertices, edges, etc : 2, 2, 6, 12, 12, 6
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,6,2,6}*576
   3-fold quotients : {2,2,2,4,6}*384a, {2,2,6,4,2}*384a
   4-fold quotients : {2,2,3,2,6}*288, {2,2,6,2,3}*288
   6-fold quotients : {2,2,2,2,6}*192, {2,2,6,2,2}*192
   8-fold quotients : {2,2,3,2,3}*144
   9-fold quotients : {2,2,2,4,2}*128
   12-fold quotients : {2,2,2,2,3}*96, {2,2,3,2,2}*96
   18-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 8,11)( 9,12)(10,13)(17,20)(18,21)(19,22)(26,29)(27,30)(28,31)(35,38)
(36,39)(37,40);;
s3 := ( 5, 8)( 6, 9)( 7,10)(14,17)(15,18)(16,19)(23,35)(24,36)(25,37)(26,32)
(27,33)(28,34)(29,38)(30,39)(31,40);;
s4 := ( 5,23)( 6,25)( 7,24)( 8,26)( 9,28)(10,27)(11,29)(12,31)(13,30)(14,32)
(15,34)(16,33)(17,35)(18,37)(19,36)(20,38)(21,40)(22,39);;
s5 := ( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)(32,33)
(35,36)(38,39);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s3*s4*s5*s4*s3*s4*s5*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(40)!(1,2);
s1 := Sym(40)!(3,4);
s2 := Sym(40)!( 8,11)( 9,12)(10,13)(17,20)(18,21)(19,22)(26,29)(27,30)(28,31)
(35,38)(36,39)(37,40);
s3 := Sym(40)!( 5, 8)( 6, 9)( 7,10)(14,17)(15,18)(16,19)(23,35)(24,36)(25,37)
(26,32)(27,33)(28,34)(29,38)(30,39)(31,40);
s4 := Sym(40)!( 5,23)( 6,25)( 7,24)( 8,26)( 9,28)(10,27)(11,29)(12,31)(13,30)
(14,32)(15,34)(16,33)(17,35)(18,37)(19,36)(20,38)(21,40)(22,39);
s5 := Sym(40)!( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39);
poly := sub<Sym(40)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s3*s4*s5*s4*s3*s4*s5*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >; 
 

to this polytope