Polytope of Type {2,2,2,4,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,4,4}*1152
if this polytope has a name.
Group : SmallGroup(1152,153182)
Rank : 6
Schlafli Type : {2,2,2,4,4}
Number of vertices, edges, etc : 2, 2, 2, 18, 36, 18
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,2,4,4}*576
   18-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := (10,13)(11,14)(12,15)(19,22)(20,23)(21,24)(28,31)(29,32)(30,33)(37,40)
(38,41)(39,42)(43,52)(44,53)(45,54)(46,58)(47,59)(48,60)(49,55)(50,56)(51,57)
(61,70)(62,71)(63,72)(64,76)(65,77)(66,78)(67,73)(68,74)(69,75);;
s4 := ( 7,43)( 8,46)( 9,49)(10,44)(11,47)(12,50)(13,45)(14,48)(15,51)(16,52)
(17,55)(18,58)(19,53)(20,56)(21,59)(22,54)(23,57)(24,60)(25,61)(26,64)(27,67)
(28,62)(29,65)(30,68)(31,63)(32,66)(33,69)(34,70)(35,73)(36,76)(37,71)(38,74)
(39,77)(40,72)(41,75)(42,78);;
s5 := ( 7,35)( 8,34)( 9,36)(10,38)(11,37)(12,39)(13,41)(14,40)(15,42)(16,26)
(17,25)(18,27)(19,29)(20,28)(21,30)(22,32)(23,31)(24,33)(43,62)(44,61)(45,63)
(46,65)(47,64)(48,66)(49,68)(50,67)(51,69)(52,71)(53,70)(54,72)(55,74)(56,73)
(57,75)(58,77)(59,76)(60,78);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s5*s4*s5*s4*s5*s4*s5, s5*s3*s4*s5*s3*s4*s5*s3*s4*s5*s3*s4*s5*s3*s4*s5*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(78)!(1,2);
s1 := Sym(78)!(3,4);
s2 := Sym(78)!(5,6);
s3 := Sym(78)!(10,13)(11,14)(12,15)(19,22)(20,23)(21,24)(28,31)(29,32)(30,33)
(37,40)(38,41)(39,42)(43,52)(44,53)(45,54)(46,58)(47,59)(48,60)(49,55)(50,56)
(51,57)(61,70)(62,71)(63,72)(64,76)(65,77)(66,78)(67,73)(68,74)(69,75);
s4 := Sym(78)!( 7,43)( 8,46)( 9,49)(10,44)(11,47)(12,50)(13,45)(14,48)(15,51)
(16,52)(17,55)(18,58)(19,53)(20,56)(21,59)(22,54)(23,57)(24,60)(25,61)(26,64)
(27,67)(28,62)(29,65)(30,68)(31,63)(32,66)(33,69)(34,70)(35,73)(36,76)(37,71)
(38,74)(39,77)(40,72)(41,75)(42,78);
s5 := Sym(78)!( 7,35)( 8,34)( 9,36)(10,38)(11,37)(12,39)(13,41)(14,40)(15,42)
(16,26)(17,25)(18,27)(19,29)(20,28)(21,30)(22,32)(23,31)(24,33)(43,62)(44,61)
(45,63)(46,65)(47,64)(48,66)(49,68)(50,67)(51,69)(52,71)(53,70)(54,72)(55,74)
(56,73)(57,75)(58,77)(59,76)(60,78);
poly := sub<Sym(78)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s5*s4*s5*s4*s5*s4*s5, s5*s3*s4*s5*s3*s4*s5*s3*s4*s5*s3*s4*s5*s3*s4*s5*s3*s4 >; 
 

to this polytope