Polytope of Type {4,4,9}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,9}*1152b
if this polytope has a name.
Group : SmallGroup(1152,154282)
Rank : 4
Schlafli Type : {4,4,9}
Number of vertices, edges, etc : 8, 32, 72, 18
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 4
Special Properties :
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4,9}*576a
   3-fold quotients : {4,4,3}*384b
   4-fold quotients : {2,4,9}*288
   6-fold quotients : {4,4,3}*192a
   8-fold quotients : {2,4,9}*144
   12-fold quotients : {2,4,3}*96
   16-fold quotients : {2,2,9}*72
   24-fold quotients : {2,4,3}*48
   48-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,145)(  2,146)(  3,147)(  4,148)(  5,150)(  6,149)(  7,152)(  8,151)
(  9,155)( 10,156)( 11,153)( 12,154)( 13,160)( 14,159)( 15,158)( 16,157)
( 17,161)( 18,162)( 19,163)( 20,164)( 21,166)( 22,165)( 23,168)( 24,167)
( 25,171)( 26,172)( 27,169)( 28,170)( 29,176)( 30,175)( 31,174)( 32,173)
( 33,177)( 34,178)( 35,179)( 36,180)( 37,182)( 38,181)( 39,184)( 40,183)
( 41,187)( 42,188)( 43,185)( 44,186)( 45,192)( 46,191)( 47,190)( 48,189)
( 49,193)( 50,194)( 51,195)( 52,196)( 53,198)( 54,197)( 55,200)( 56,199)
( 57,203)( 58,204)( 59,201)( 60,202)( 61,208)( 62,207)( 63,206)( 64,205)
( 65,209)( 66,210)( 67,211)( 68,212)( 69,214)( 70,213)( 71,216)( 72,215)
( 73,219)( 74,220)( 75,217)( 76,218)( 77,224)( 78,223)( 79,222)( 80,221)
( 81,225)( 82,226)( 83,227)( 84,228)( 85,230)( 86,229)( 87,232)( 88,231)
( 89,235)( 90,236)( 91,233)( 92,234)( 93,240)( 94,239)( 95,238)( 96,237)
( 97,241)( 98,242)( 99,243)(100,244)(101,246)(102,245)(103,248)(104,247)
(105,251)(106,252)(107,249)(108,250)(109,256)(110,255)(111,254)(112,253)
(113,257)(114,258)(115,259)(116,260)(117,262)(118,261)(119,264)(120,263)
(121,267)(122,268)(123,265)(124,266)(125,272)(126,271)(127,270)(128,269)
(129,273)(130,274)(131,275)(132,276)(133,278)(134,277)(135,280)(136,279)
(137,283)(138,284)(139,281)(140,282)(141,288)(142,287)(143,286)(144,285)
(289,433)(290,434)(291,435)(292,436)(293,438)(294,437)(295,440)(296,439)
(297,443)(298,444)(299,441)(300,442)(301,448)(302,447)(303,446)(304,445)
(305,449)(306,450)(307,451)(308,452)(309,454)(310,453)(311,456)(312,455)
(313,459)(314,460)(315,457)(316,458)(317,464)(318,463)(319,462)(320,461)
(321,465)(322,466)(323,467)(324,468)(325,470)(326,469)(327,472)(328,471)
(329,475)(330,476)(331,473)(332,474)(333,480)(334,479)(335,478)(336,477)
(337,481)(338,482)(339,483)(340,484)(341,486)(342,485)(343,488)(344,487)
(345,491)(346,492)(347,489)(348,490)(349,496)(350,495)(351,494)(352,493)
(353,497)(354,498)(355,499)(356,500)(357,502)(358,501)(359,504)(360,503)
(361,507)(362,508)(363,505)(364,506)(365,512)(366,511)(367,510)(368,509)
(369,513)(370,514)(371,515)(372,516)(373,518)(374,517)(375,520)(376,519)
(377,523)(378,524)(379,521)(380,522)(381,528)(382,527)(383,526)(384,525)
(385,529)(386,530)(387,531)(388,532)(389,534)(390,533)(391,536)(392,535)
(393,539)(394,540)(395,537)(396,538)(397,544)(398,543)(399,542)(400,541)
(401,545)(402,546)(403,547)(404,548)(405,550)(406,549)(407,552)(408,551)
(409,555)(410,556)(411,553)(412,554)(413,560)(414,559)(415,558)(416,557)
(417,561)(418,562)(419,563)(420,564)(421,566)(422,565)(423,568)(424,567)
(425,571)(426,572)(427,569)(428,570)(429,576)(430,575)(431,574)(432,573);;
s1 := (  1,297)(  2,298)(  3,299)(  4,300)(  5,301)(  6,302)(  7,303)(  8,304)
(  9,289)( 10,290)( 11,291)( 12,292)( 13,293)( 14,294)( 15,295)( 16,296)
( 17,313)( 18,314)( 19,315)( 20,316)( 21,317)( 22,318)( 23,319)( 24,320)
( 25,305)( 26,306)( 27,307)( 28,308)( 29,309)( 30,310)( 31,311)( 32,312)
( 33,329)( 34,330)( 35,331)( 36,332)( 37,333)( 38,334)( 39,335)( 40,336)
( 41,321)( 42,322)( 43,323)( 44,324)( 45,325)( 46,326)( 47,327)( 48,328)
( 49,345)( 50,346)( 51,347)( 52,348)( 53,349)( 54,350)( 55,351)( 56,352)
( 57,337)( 58,338)( 59,339)( 60,340)( 61,341)( 62,342)( 63,343)( 64,344)
( 65,361)( 66,362)( 67,363)( 68,364)( 69,365)( 70,366)( 71,367)( 72,368)
( 73,353)( 74,354)( 75,355)( 76,356)( 77,357)( 78,358)( 79,359)( 80,360)
( 81,377)( 82,378)( 83,379)( 84,380)( 85,381)( 86,382)( 87,383)( 88,384)
( 89,369)( 90,370)( 91,371)( 92,372)( 93,373)( 94,374)( 95,375)( 96,376)
( 97,393)( 98,394)( 99,395)(100,396)(101,397)(102,398)(103,399)(104,400)
(105,385)(106,386)(107,387)(108,388)(109,389)(110,390)(111,391)(112,392)
(113,409)(114,410)(115,411)(116,412)(117,413)(118,414)(119,415)(120,416)
(121,401)(122,402)(123,403)(124,404)(125,405)(126,406)(127,407)(128,408)
(129,425)(130,426)(131,427)(132,428)(133,429)(134,430)(135,431)(136,432)
(137,417)(138,418)(139,419)(140,420)(141,421)(142,422)(143,423)(144,424)
(145,441)(146,442)(147,443)(148,444)(149,445)(150,446)(151,447)(152,448)
(153,433)(154,434)(155,435)(156,436)(157,437)(158,438)(159,439)(160,440)
(161,457)(162,458)(163,459)(164,460)(165,461)(166,462)(167,463)(168,464)
(169,449)(170,450)(171,451)(172,452)(173,453)(174,454)(175,455)(176,456)
(177,473)(178,474)(179,475)(180,476)(181,477)(182,478)(183,479)(184,480)
(185,465)(186,466)(187,467)(188,468)(189,469)(190,470)(191,471)(192,472)
(193,489)(194,490)(195,491)(196,492)(197,493)(198,494)(199,495)(200,496)
(201,481)(202,482)(203,483)(204,484)(205,485)(206,486)(207,487)(208,488)
(209,505)(210,506)(211,507)(212,508)(213,509)(214,510)(215,511)(216,512)
(217,497)(218,498)(219,499)(220,500)(221,501)(222,502)(223,503)(224,504)
(225,521)(226,522)(227,523)(228,524)(229,525)(230,526)(231,527)(232,528)
(233,513)(234,514)(235,515)(236,516)(237,517)(238,518)(239,519)(240,520)
(241,537)(242,538)(243,539)(244,540)(245,541)(246,542)(247,543)(248,544)
(249,529)(250,530)(251,531)(252,532)(253,533)(254,534)(255,535)(256,536)
(257,553)(258,554)(259,555)(260,556)(261,557)(262,558)(263,559)(264,560)
(265,545)(266,546)(267,547)(268,548)(269,549)(270,550)(271,551)(272,552)
(273,569)(274,570)(275,571)(276,572)(277,573)(278,574)(279,575)(280,576)
(281,561)(282,562)(283,563)(284,564)(285,565)(286,566)(287,567)(288,568);;
s2 := (  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)( 26, 46)
( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49,129)( 50,130)
( 51,132)( 52,131)( 53,133)( 54,134)( 55,136)( 56,135)( 57,141)( 58,142)
( 59,144)( 60,143)( 61,137)( 62,138)( 63,140)( 64,139)( 65,113)( 66,114)
( 67,116)( 68,115)( 69,117)( 70,118)( 71,120)( 72,119)( 73,125)( 74,126)
( 75,128)( 76,127)( 77,121)( 78,122)( 79,124)( 80,123)( 81, 97)( 82, 98)
( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)( 89,109)( 90,110)
( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107)(147,148)(151,152)
(153,157)(154,158)(155,160)(156,159)(161,177)(162,178)(163,180)(164,179)
(165,181)(166,182)(167,184)(168,183)(169,189)(170,190)(171,192)(172,191)
(173,185)(174,186)(175,188)(176,187)(193,273)(194,274)(195,276)(196,275)
(197,277)(198,278)(199,280)(200,279)(201,285)(202,286)(203,288)(204,287)
(205,281)(206,282)(207,284)(208,283)(209,257)(210,258)(211,260)(212,259)
(213,261)(214,262)(215,264)(216,263)(217,269)(218,270)(219,272)(220,271)
(221,265)(222,266)(223,268)(224,267)(225,241)(226,242)(227,244)(228,243)
(229,245)(230,246)(231,248)(232,247)(233,253)(234,254)(235,256)(236,255)
(237,249)(238,250)(239,252)(240,251)(291,292)(295,296)(297,301)(298,302)
(299,304)(300,303)(305,321)(306,322)(307,324)(308,323)(309,325)(310,326)
(311,328)(312,327)(313,333)(314,334)(315,336)(316,335)(317,329)(318,330)
(319,332)(320,331)(337,417)(338,418)(339,420)(340,419)(341,421)(342,422)
(343,424)(344,423)(345,429)(346,430)(347,432)(348,431)(349,425)(350,426)
(351,428)(352,427)(353,401)(354,402)(355,404)(356,403)(357,405)(358,406)
(359,408)(360,407)(361,413)(362,414)(363,416)(364,415)(365,409)(366,410)
(367,412)(368,411)(369,385)(370,386)(371,388)(372,387)(373,389)(374,390)
(375,392)(376,391)(377,397)(378,398)(379,400)(380,399)(381,393)(382,394)
(383,396)(384,395)(435,436)(439,440)(441,445)(442,446)(443,448)(444,447)
(449,465)(450,466)(451,468)(452,467)(453,469)(454,470)(455,472)(456,471)
(457,477)(458,478)(459,480)(460,479)(461,473)(462,474)(463,476)(464,475)
(481,561)(482,562)(483,564)(484,563)(485,565)(486,566)(487,568)(488,567)
(489,573)(490,574)(491,576)(492,575)(493,569)(494,570)(495,572)(496,571)
(497,545)(498,546)(499,548)(500,547)(501,549)(502,550)(503,552)(504,551)
(505,557)(506,558)(507,560)(508,559)(509,553)(510,554)(511,556)(512,555)
(513,529)(514,530)(515,532)(516,531)(517,533)(518,534)(519,536)(520,535)
(521,541)(522,542)(523,544)(524,543)(525,537)(526,538)(527,540)(528,539);;
s3 := (  1, 49)(  2, 52)(  3, 51)(  4, 50)(  5, 61)(  6, 64)(  7, 63)(  8, 62)
(  9, 57)( 10, 60)( 11, 59)( 12, 58)( 13, 53)( 14, 56)( 15, 55)( 16, 54)
( 17, 81)( 18, 84)( 19, 83)( 20, 82)( 21, 93)( 22, 96)( 23, 95)( 24, 94)
( 25, 89)( 26, 92)( 27, 91)( 28, 90)( 29, 85)( 30, 88)( 31, 87)( 32, 86)
( 33, 65)( 34, 68)( 35, 67)( 36, 66)( 37, 77)( 38, 80)( 39, 79)( 40, 78)
( 41, 73)( 42, 76)( 43, 75)( 44, 74)( 45, 69)( 46, 72)( 47, 71)( 48, 70)
( 97,129)( 98,132)( 99,131)(100,130)(101,141)(102,144)(103,143)(104,142)
(105,137)(106,140)(107,139)(108,138)(109,133)(110,136)(111,135)(112,134)
(114,116)(117,125)(118,128)(119,127)(120,126)(122,124)(145,193)(146,196)
(147,195)(148,194)(149,205)(150,208)(151,207)(152,206)(153,201)(154,204)
(155,203)(156,202)(157,197)(158,200)(159,199)(160,198)(161,225)(162,228)
(163,227)(164,226)(165,237)(166,240)(167,239)(168,238)(169,233)(170,236)
(171,235)(172,234)(173,229)(174,232)(175,231)(176,230)(177,209)(178,212)
(179,211)(180,210)(181,221)(182,224)(183,223)(184,222)(185,217)(186,220)
(187,219)(188,218)(189,213)(190,216)(191,215)(192,214)(241,273)(242,276)
(243,275)(244,274)(245,285)(246,288)(247,287)(248,286)(249,281)(250,284)
(251,283)(252,282)(253,277)(254,280)(255,279)(256,278)(258,260)(261,269)
(262,272)(263,271)(264,270)(266,268)(289,337)(290,340)(291,339)(292,338)
(293,349)(294,352)(295,351)(296,350)(297,345)(298,348)(299,347)(300,346)
(301,341)(302,344)(303,343)(304,342)(305,369)(306,372)(307,371)(308,370)
(309,381)(310,384)(311,383)(312,382)(313,377)(314,380)(315,379)(316,378)
(317,373)(318,376)(319,375)(320,374)(321,353)(322,356)(323,355)(324,354)
(325,365)(326,368)(327,367)(328,366)(329,361)(330,364)(331,363)(332,362)
(333,357)(334,360)(335,359)(336,358)(385,417)(386,420)(387,419)(388,418)
(389,429)(390,432)(391,431)(392,430)(393,425)(394,428)(395,427)(396,426)
(397,421)(398,424)(399,423)(400,422)(402,404)(405,413)(406,416)(407,415)
(408,414)(410,412)(433,481)(434,484)(435,483)(436,482)(437,493)(438,496)
(439,495)(440,494)(441,489)(442,492)(443,491)(444,490)(445,485)(446,488)
(447,487)(448,486)(449,513)(450,516)(451,515)(452,514)(453,525)(454,528)
(455,527)(456,526)(457,521)(458,524)(459,523)(460,522)(461,517)(462,520)
(463,519)(464,518)(465,497)(466,500)(467,499)(468,498)(469,509)(470,512)
(471,511)(472,510)(473,505)(474,508)(475,507)(476,506)(477,501)(478,504)
(479,503)(480,502)(529,561)(530,564)(531,563)(532,562)(533,573)(534,576)
(535,575)(536,574)(537,569)(538,572)(539,571)(540,570)(541,565)(542,568)
(543,567)(544,566)(546,548)(549,557)(550,560)(551,559)(552,558)(554,556);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s0*s1*s2*s3*s1*s2*s1*s0*s1*s2*s3*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(576)!(  1,145)(  2,146)(  3,147)(  4,148)(  5,150)(  6,149)(  7,152)
(  8,151)(  9,155)( 10,156)( 11,153)( 12,154)( 13,160)( 14,159)( 15,158)
( 16,157)( 17,161)( 18,162)( 19,163)( 20,164)( 21,166)( 22,165)( 23,168)
( 24,167)( 25,171)( 26,172)( 27,169)( 28,170)( 29,176)( 30,175)( 31,174)
( 32,173)( 33,177)( 34,178)( 35,179)( 36,180)( 37,182)( 38,181)( 39,184)
( 40,183)( 41,187)( 42,188)( 43,185)( 44,186)( 45,192)( 46,191)( 47,190)
( 48,189)( 49,193)( 50,194)( 51,195)( 52,196)( 53,198)( 54,197)( 55,200)
( 56,199)( 57,203)( 58,204)( 59,201)( 60,202)( 61,208)( 62,207)( 63,206)
( 64,205)( 65,209)( 66,210)( 67,211)( 68,212)( 69,214)( 70,213)( 71,216)
( 72,215)( 73,219)( 74,220)( 75,217)( 76,218)( 77,224)( 78,223)( 79,222)
( 80,221)( 81,225)( 82,226)( 83,227)( 84,228)( 85,230)( 86,229)( 87,232)
( 88,231)( 89,235)( 90,236)( 91,233)( 92,234)( 93,240)( 94,239)( 95,238)
( 96,237)( 97,241)( 98,242)( 99,243)(100,244)(101,246)(102,245)(103,248)
(104,247)(105,251)(106,252)(107,249)(108,250)(109,256)(110,255)(111,254)
(112,253)(113,257)(114,258)(115,259)(116,260)(117,262)(118,261)(119,264)
(120,263)(121,267)(122,268)(123,265)(124,266)(125,272)(126,271)(127,270)
(128,269)(129,273)(130,274)(131,275)(132,276)(133,278)(134,277)(135,280)
(136,279)(137,283)(138,284)(139,281)(140,282)(141,288)(142,287)(143,286)
(144,285)(289,433)(290,434)(291,435)(292,436)(293,438)(294,437)(295,440)
(296,439)(297,443)(298,444)(299,441)(300,442)(301,448)(302,447)(303,446)
(304,445)(305,449)(306,450)(307,451)(308,452)(309,454)(310,453)(311,456)
(312,455)(313,459)(314,460)(315,457)(316,458)(317,464)(318,463)(319,462)
(320,461)(321,465)(322,466)(323,467)(324,468)(325,470)(326,469)(327,472)
(328,471)(329,475)(330,476)(331,473)(332,474)(333,480)(334,479)(335,478)
(336,477)(337,481)(338,482)(339,483)(340,484)(341,486)(342,485)(343,488)
(344,487)(345,491)(346,492)(347,489)(348,490)(349,496)(350,495)(351,494)
(352,493)(353,497)(354,498)(355,499)(356,500)(357,502)(358,501)(359,504)
(360,503)(361,507)(362,508)(363,505)(364,506)(365,512)(366,511)(367,510)
(368,509)(369,513)(370,514)(371,515)(372,516)(373,518)(374,517)(375,520)
(376,519)(377,523)(378,524)(379,521)(380,522)(381,528)(382,527)(383,526)
(384,525)(385,529)(386,530)(387,531)(388,532)(389,534)(390,533)(391,536)
(392,535)(393,539)(394,540)(395,537)(396,538)(397,544)(398,543)(399,542)
(400,541)(401,545)(402,546)(403,547)(404,548)(405,550)(406,549)(407,552)
(408,551)(409,555)(410,556)(411,553)(412,554)(413,560)(414,559)(415,558)
(416,557)(417,561)(418,562)(419,563)(420,564)(421,566)(422,565)(423,568)
(424,567)(425,571)(426,572)(427,569)(428,570)(429,576)(430,575)(431,574)
(432,573);
s1 := Sym(576)!(  1,297)(  2,298)(  3,299)(  4,300)(  5,301)(  6,302)(  7,303)
(  8,304)(  9,289)( 10,290)( 11,291)( 12,292)( 13,293)( 14,294)( 15,295)
( 16,296)( 17,313)( 18,314)( 19,315)( 20,316)( 21,317)( 22,318)( 23,319)
( 24,320)( 25,305)( 26,306)( 27,307)( 28,308)( 29,309)( 30,310)( 31,311)
( 32,312)( 33,329)( 34,330)( 35,331)( 36,332)( 37,333)( 38,334)( 39,335)
( 40,336)( 41,321)( 42,322)( 43,323)( 44,324)( 45,325)( 46,326)( 47,327)
( 48,328)( 49,345)( 50,346)( 51,347)( 52,348)( 53,349)( 54,350)( 55,351)
( 56,352)( 57,337)( 58,338)( 59,339)( 60,340)( 61,341)( 62,342)( 63,343)
( 64,344)( 65,361)( 66,362)( 67,363)( 68,364)( 69,365)( 70,366)( 71,367)
( 72,368)( 73,353)( 74,354)( 75,355)( 76,356)( 77,357)( 78,358)( 79,359)
( 80,360)( 81,377)( 82,378)( 83,379)( 84,380)( 85,381)( 86,382)( 87,383)
( 88,384)( 89,369)( 90,370)( 91,371)( 92,372)( 93,373)( 94,374)( 95,375)
( 96,376)( 97,393)( 98,394)( 99,395)(100,396)(101,397)(102,398)(103,399)
(104,400)(105,385)(106,386)(107,387)(108,388)(109,389)(110,390)(111,391)
(112,392)(113,409)(114,410)(115,411)(116,412)(117,413)(118,414)(119,415)
(120,416)(121,401)(122,402)(123,403)(124,404)(125,405)(126,406)(127,407)
(128,408)(129,425)(130,426)(131,427)(132,428)(133,429)(134,430)(135,431)
(136,432)(137,417)(138,418)(139,419)(140,420)(141,421)(142,422)(143,423)
(144,424)(145,441)(146,442)(147,443)(148,444)(149,445)(150,446)(151,447)
(152,448)(153,433)(154,434)(155,435)(156,436)(157,437)(158,438)(159,439)
(160,440)(161,457)(162,458)(163,459)(164,460)(165,461)(166,462)(167,463)
(168,464)(169,449)(170,450)(171,451)(172,452)(173,453)(174,454)(175,455)
(176,456)(177,473)(178,474)(179,475)(180,476)(181,477)(182,478)(183,479)
(184,480)(185,465)(186,466)(187,467)(188,468)(189,469)(190,470)(191,471)
(192,472)(193,489)(194,490)(195,491)(196,492)(197,493)(198,494)(199,495)
(200,496)(201,481)(202,482)(203,483)(204,484)(205,485)(206,486)(207,487)
(208,488)(209,505)(210,506)(211,507)(212,508)(213,509)(214,510)(215,511)
(216,512)(217,497)(218,498)(219,499)(220,500)(221,501)(222,502)(223,503)
(224,504)(225,521)(226,522)(227,523)(228,524)(229,525)(230,526)(231,527)
(232,528)(233,513)(234,514)(235,515)(236,516)(237,517)(238,518)(239,519)
(240,520)(241,537)(242,538)(243,539)(244,540)(245,541)(246,542)(247,543)
(248,544)(249,529)(250,530)(251,531)(252,532)(253,533)(254,534)(255,535)
(256,536)(257,553)(258,554)(259,555)(260,556)(261,557)(262,558)(263,559)
(264,560)(265,545)(266,546)(267,547)(268,548)(269,549)(270,550)(271,551)
(272,552)(273,569)(274,570)(275,571)(276,572)(277,573)(278,574)(279,575)
(280,576)(281,561)(282,562)(283,563)(284,564)(285,565)(286,566)(287,567)
(288,568);
s2 := Sym(576)!(  3,  4)(  7,  8)(  9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)
( 26, 46)( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49,129)
( 50,130)( 51,132)( 52,131)( 53,133)( 54,134)( 55,136)( 56,135)( 57,141)
( 58,142)( 59,144)( 60,143)( 61,137)( 62,138)( 63,140)( 64,139)( 65,113)
( 66,114)( 67,116)( 68,115)( 69,117)( 70,118)( 71,120)( 72,119)( 73,125)
( 74,126)( 75,128)( 76,127)( 77,121)( 78,122)( 79,124)( 80,123)( 81, 97)
( 82, 98)( 83,100)( 84, 99)( 85,101)( 86,102)( 87,104)( 88,103)( 89,109)
( 90,110)( 91,112)( 92,111)( 93,105)( 94,106)( 95,108)( 96,107)(147,148)
(151,152)(153,157)(154,158)(155,160)(156,159)(161,177)(162,178)(163,180)
(164,179)(165,181)(166,182)(167,184)(168,183)(169,189)(170,190)(171,192)
(172,191)(173,185)(174,186)(175,188)(176,187)(193,273)(194,274)(195,276)
(196,275)(197,277)(198,278)(199,280)(200,279)(201,285)(202,286)(203,288)
(204,287)(205,281)(206,282)(207,284)(208,283)(209,257)(210,258)(211,260)
(212,259)(213,261)(214,262)(215,264)(216,263)(217,269)(218,270)(219,272)
(220,271)(221,265)(222,266)(223,268)(224,267)(225,241)(226,242)(227,244)
(228,243)(229,245)(230,246)(231,248)(232,247)(233,253)(234,254)(235,256)
(236,255)(237,249)(238,250)(239,252)(240,251)(291,292)(295,296)(297,301)
(298,302)(299,304)(300,303)(305,321)(306,322)(307,324)(308,323)(309,325)
(310,326)(311,328)(312,327)(313,333)(314,334)(315,336)(316,335)(317,329)
(318,330)(319,332)(320,331)(337,417)(338,418)(339,420)(340,419)(341,421)
(342,422)(343,424)(344,423)(345,429)(346,430)(347,432)(348,431)(349,425)
(350,426)(351,428)(352,427)(353,401)(354,402)(355,404)(356,403)(357,405)
(358,406)(359,408)(360,407)(361,413)(362,414)(363,416)(364,415)(365,409)
(366,410)(367,412)(368,411)(369,385)(370,386)(371,388)(372,387)(373,389)
(374,390)(375,392)(376,391)(377,397)(378,398)(379,400)(380,399)(381,393)
(382,394)(383,396)(384,395)(435,436)(439,440)(441,445)(442,446)(443,448)
(444,447)(449,465)(450,466)(451,468)(452,467)(453,469)(454,470)(455,472)
(456,471)(457,477)(458,478)(459,480)(460,479)(461,473)(462,474)(463,476)
(464,475)(481,561)(482,562)(483,564)(484,563)(485,565)(486,566)(487,568)
(488,567)(489,573)(490,574)(491,576)(492,575)(493,569)(494,570)(495,572)
(496,571)(497,545)(498,546)(499,548)(500,547)(501,549)(502,550)(503,552)
(504,551)(505,557)(506,558)(507,560)(508,559)(509,553)(510,554)(511,556)
(512,555)(513,529)(514,530)(515,532)(516,531)(517,533)(518,534)(519,536)
(520,535)(521,541)(522,542)(523,544)(524,543)(525,537)(526,538)(527,540)
(528,539);
s3 := Sym(576)!(  1, 49)(  2, 52)(  3, 51)(  4, 50)(  5, 61)(  6, 64)(  7, 63)
(  8, 62)(  9, 57)( 10, 60)( 11, 59)( 12, 58)( 13, 53)( 14, 56)( 15, 55)
( 16, 54)( 17, 81)( 18, 84)( 19, 83)( 20, 82)( 21, 93)( 22, 96)( 23, 95)
( 24, 94)( 25, 89)( 26, 92)( 27, 91)( 28, 90)( 29, 85)( 30, 88)( 31, 87)
( 32, 86)( 33, 65)( 34, 68)( 35, 67)( 36, 66)( 37, 77)( 38, 80)( 39, 79)
( 40, 78)( 41, 73)( 42, 76)( 43, 75)( 44, 74)( 45, 69)( 46, 72)( 47, 71)
( 48, 70)( 97,129)( 98,132)( 99,131)(100,130)(101,141)(102,144)(103,143)
(104,142)(105,137)(106,140)(107,139)(108,138)(109,133)(110,136)(111,135)
(112,134)(114,116)(117,125)(118,128)(119,127)(120,126)(122,124)(145,193)
(146,196)(147,195)(148,194)(149,205)(150,208)(151,207)(152,206)(153,201)
(154,204)(155,203)(156,202)(157,197)(158,200)(159,199)(160,198)(161,225)
(162,228)(163,227)(164,226)(165,237)(166,240)(167,239)(168,238)(169,233)
(170,236)(171,235)(172,234)(173,229)(174,232)(175,231)(176,230)(177,209)
(178,212)(179,211)(180,210)(181,221)(182,224)(183,223)(184,222)(185,217)
(186,220)(187,219)(188,218)(189,213)(190,216)(191,215)(192,214)(241,273)
(242,276)(243,275)(244,274)(245,285)(246,288)(247,287)(248,286)(249,281)
(250,284)(251,283)(252,282)(253,277)(254,280)(255,279)(256,278)(258,260)
(261,269)(262,272)(263,271)(264,270)(266,268)(289,337)(290,340)(291,339)
(292,338)(293,349)(294,352)(295,351)(296,350)(297,345)(298,348)(299,347)
(300,346)(301,341)(302,344)(303,343)(304,342)(305,369)(306,372)(307,371)
(308,370)(309,381)(310,384)(311,383)(312,382)(313,377)(314,380)(315,379)
(316,378)(317,373)(318,376)(319,375)(320,374)(321,353)(322,356)(323,355)
(324,354)(325,365)(326,368)(327,367)(328,366)(329,361)(330,364)(331,363)
(332,362)(333,357)(334,360)(335,359)(336,358)(385,417)(386,420)(387,419)
(388,418)(389,429)(390,432)(391,431)(392,430)(393,425)(394,428)(395,427)
(396,426)(397,421)(398,424)(399,423)(400,422)(402,404)(405,413)(406,416)
(407,415)(408,414)(410,412)(433,481)(434,484)(435,483)(436,482)(437,493)
(438,496)(439,495)(440,494)(441,489)(442,492)(443,491)(444,490)(445,485)
(446,488)(447,487)(448,486)(449,513)(450,516)(451,515)(452,514)(453,525)
(454,528)(455,527)(456,526)(457,521)(458,524)(459,523)(460,522)(461,517)
(462,520)(463,519)(464,518)(465,497)(466,500)(467,499)(468,498)(469,509)
(470,512)(471,511)(472,510)(473,505)(474,508)(475,507)(476,506)(477,501)
(478,504)(479,503)(480,502)(529,561)(530,564)(531,563)(532,562)(533,573)
(534,576)(535,575)(536,574)(537,569)(538,572)(539,571)(540,570)(541,565)
(542,568)(543,567)(544,566)(546,548)(549,557)(550,560)(551,559)(552,558)
(554,556);
poly := sub<Sym(576)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s0*s1*s2*s3*s1*s2*s1*s0*s1*s2*s3*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope