include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,9,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,9,2}*1152
if this polytope has a name.
Group : SmallGroup(1152,154283)
Rank : 4
Schlafli Type : {8,9,2}
Number of vertices, edges, etc : 32, 144, 36, 2
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {8,3,2}*384
4-fold quotients : {4,9,2}*288
8-fold quotients : {4,9,2}*144
12-fold quotients : {4,3,2}*96
16-fold quotients : {2,9,2}*72
24-fold quotients : {4,3,2}*48
48-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 16)( 6, 15)( 7, 14)( 8, 13)
( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 32)( 22, 31)( 23, 30)( 24, 29)
( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 48)( 38, 47)( 39, 46)( 40, 45)
( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 64)( 54, 63)( 55, 62)( 56, 61)
( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 80)( 70, 79)( 71, 78)( 72, 77)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 96)( 86, 95)( 87, 94)( 88, 93)
( 97,105)( 98,106)( 99,107)(100,108)(101,112)(102,111)(103,110)(104,109)
(113,121)(114,122)(115,123)(116,124)(117,128)(118,127)(119,126)(120,125)
(129,137)(130,138)(131,139)(132,140)(133,144)(134,143)(135,142)(136,141);;
s1 := ( 3, 4)( 5, 10)( 6, 9)( 7, 11)( 8, 12)( 15, 16)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 42)( 22, 41)( 23, 43)( 24, 44)( 25, 38)( 26, 37)
( 27, 39)( 28, 40)( 29, 45)( 30, 46)( 31, 48)( 32, 47)( 49,113)( 50,114)
( 51,116)( 52,115)( 53,122)( 54,121)( 55,123)( 56,124)( 57,118)( 58,117)
( 59,119)( 60,120)( 61,125)( 62,126)( 63,128)( 64,127)( 65, 97)( 66, 98)
( 67,100)( 68, 99)( 69,106)( 70,105)( 71,107)( 72,108)( 73,102)( 74,101)
( 75,103)( 76,104)( 77,109)( 78,110)( 79,112)( 80,111)( 81,129)( 82,130)
( 83,132)( 84,131)( 85,138)( 86,137)( 87,139)( 88,140)( 89,134)( 90,133)
( 91,135)( 92,136)( 93,141)( 94,142)( 95,144)( 96,143);;
s2 := ( 1,105)( 2,108)( 3,107)( 4,106)( 5,103)( 6,102)( 7,101)( 8,104)
( 9, 97)( 10,100)( 11, 99)( 12, 98)( 13,109)( 14,112)( 15,111)( 16,110)
( 17,137)( 18,140)( 19,139)( 20,138)( 21,135)( 22,134)( 23,133)( 24,136)
( 25,129)( 26,132)( 27,131)( 28,130)( 29,141)( 30,144)( 31,143)( 32,142)
( 33,121)( 34,124)( 35,123)( 36,122)( 37,119)( 38,118)( 39,117)( 40,120)
( 41,113)( 42,116)( 43,115)( 44,114)( 45,125)( 46,128)( 47,127)( 48,126)
( 49, 57)( 50, 60)( 51, 59)( 52, 58)( 53, 55)( 62, 64)( 65, 89)( 66, 92)
( 67, 91)( 68, 90)( 69, 87)( 70, 86)( 71, 85)( 72, 88)( 73, 81)( 74, 84)
( 75, 83)( 76, 82)( 77, 93)( 78, 96)( 79, 95)( 80, 94);;
s3 := (145,146);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(146)!( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 16)( 6, 15)( 7, 14)
( 8, 13)( 17, 25)( 18, 26)( 19, 27)( 20, 28)( 21, 32)( 22, 31)( 23, 30)
( 24, 29)( 33, 41)( 34, 42)( 35, 43)( 36, 44)( 37, 48)( 38, 47)( 39, 46)
( 40, 45)( 49, 57)( 50, 58)( 51, 59)( 52, 60)( 53, 64)( 54, 63)( 55, 62)
( 56, 61)( 65, 73)( 66, 74)( 67, 75)( 68, 76)( 69, 80)( 70, 79)( 71, 78)
( 72, 77)( 81, 89)( 82, 90)( 83, 91)( 84, 92)( 85, 96)( 86, 95)( 87, 94)
( 88, 93)( 97,105)( 98,106)( 99,107)(100,108)(101,112)(102,111)(103,110)
(104,109)(113,121)(114,122)(115,123)(116,124)(117,128)(118,127)(119,126)
(120,125)(129,137)(130,138)(131,139)(132,140)(133,144)(134,143)(135,142)
(136,141);
s1 := Sym(146)!( 3, 4)( 5, 10)( 6, 9)( 7, 11)( 8, 12)( 15, 16)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 42)( 22, 41)( 23, 43)( 24, 44)( 25, 38)
( 26, 37)( 27, 39)( 28, 40)( 29, 45)( 30, 46)( 31, 48)( 32, 47)( 49,113)
( 50,114)( 51,116)( 52,115)( 53,122)( 54,121)( 55,123)( 56,124)( 57,118)
( 58,117)( 59,119)( 60,120)( 61,125)( 62,126)( 63,128)( 64,127)( 65, 97)
( 66, 98)( 67,100)( 68, 99)( 69,106)( 70,105)( 71,107)( 72,108)( 73,102)
( 74,101)( 75,103)( 76,104)( 77,109)( 78,110)( 79,112)( 80,111)( 81,129)
( 82,130)( 83,132)( 84,131)( 85,138)( 86,137)( 87,139)( 88,140)( 89,134)
( 90,133)( 91,135)( 92,136)( 93,141)( 94,142)( 95,144)( 96,143);
s2 := Sym(146)!( 1,105)( 2,108)( 3,107)( 4,106)( 5,103)( 6,102)( 7,101)
( 8,104)( 9, 97)( 10,100)( 11, 99)( 12, 98)( 13,109)( 14,112)( 15,111)
( 16,110)( 17,137)( 18,140)( 19,139)( 20,138)( 21,135)( 22,134)( 23,133)
( 24,136)( 25,129)( 26,132)( 27,131)( 28,130)( 29,141)( 30,144)( 31,143)
( 32,142)( 33,121)( 34,124)( 35,123)( 36,122)( 37,119)( 38,118)( 39,117)
( 40,120)( 41,113)( 42,116)( 43,115)( 44,114)( 45,125)( 46,128)( 47,127)
( 48,126)( 49, 57)( 50, 60)( 51, 59)( 52, 58)( 53, 55)( 62, 64)( 65, 89)
( 66, 92)( 67, 91)( 68, 90)( 69, 87)( 70, 86)( 71, 85)( 72, 88)( 73, 81)
( 74, 84)( 75, 83)( 76, 82)( 77, 93)( 78, 96)( 79, 95)( 80, 94);
s3 := Sym(146)!(145,146);
poly := sub<Sym(146)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope