include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,18,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,18,8}*1152b
if this polytope has a name.
Group : SmallGroup(1152,154366)
Rank : 4
Schlafli Type : {4,18,8}
Number of vertices, edges, etc : 4, 36, 72, 8
Order of s0s1s2s3 : 72
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,18,4}*576c
3-fold quotients : {4,6,8}*384b
4-fold quotients : {4,18,2}*288b
6-fold quotients : {4,6,4}*192c
8-fold quotients : {4,9,2}*144
12-fold quotients : {4,6,2}*96c
24-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)( 14, 16)
( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)( 30, 32)
( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)( 46, 48)
( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)( 62, 64)
( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)( 78, 80)
( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)( 94, 96)
( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)
(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)
(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)
(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)
(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192)
(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)(206,208)
(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)(222,224)
(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)(238,240)
(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)(254,256)
(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)(270,272)
(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)(286,288);;
s1 := ( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 13, 33)( 14, 34)( 15, 36)
( 16, 35)( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 25)( 22, 26)( 23, 28)
( 24, 27)( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 69)( 50, 70)
( 51, 72)( 52, 71)( 53, 65)( 54, 66)( 55, 68)( 56, 67)( 57, 61)( 58, 62)
( 59, 64)( 60, 63)( 75, 76)( 77, 81)( 78, 82)( 79, 84)( 80, 83)( 85,105)
( 86,106)( 87,108)( 88,107)( 89,101)( 90,102)( 91,104)( 92,103)( 93, 97)
( 94, 98)( 95,100)( 96, 99)(111,112)(113,117)(114,118)(115,120)(116,119)
(121,141)(122,142)(123,144)(124,143)(125,137)(126,138)(127,140)(128,139)
(129,133)(130,134)(131,136)(132,135)(147,148)(149,153)(150,154)(151,156)
(152,155)(157,177)(158,178)(159,180)(160,179)(161,173)(162,174)(163,176)
(164,175)(165,169)(166,170)(167,172)(168,171)(183,184)(185,189)(186,190)
(187,192)(188,191)(193,213)(194,214)(195,216)(196,215)(197,209)(198,210)
(199,212)(200,211)(201,205)(202,206)(203,208)(204,207)(219,220)(221,225)
(222,226)(223,228)(224,227)(229,249)(230,250)(231,252)(232,251)(233,245)
(234,246)(235,248)(236,247)(237,241)(238,242)(239,244)(240,243)(255,256)
(257,261)(258,262)(259,264)(260,263)(265,285)(266,286)(267,288)(268,287)
(269,281)(270,282)(271,284)(272,283)(273,277)(274,278)(275,280)(276,279);;
s2 := ( 1, 13)( 2, 16)( 3, 15)( 4, 14)( 5, 21)( 6, 24)( 7, 23)( 8, 22)
( 9, 17)( 10, 20)( 11, 19)( 12, 18)( 25, 33)( 26, 36)( 27, 35)( 28, 34)
( 30, 32)( 37, 49)( 38, 52)( 39, 51)( 40, 50)( 41, 57)( 42, 60)( 43, 59)
( 44, 58)( 45, 53)( 46, 56)( 47, 55)( 48, 54)( 61, 69)( 62, 72)( 63, 71)
( 64, 70)( 66, 68)( 73,121)( 74,124)( 75,123)( 76,122)( 77,129)( 78,132)
( 79,131)( 80,130)( 81,125)( 82,128)( 83,127)( 84,126)( 85,109)( 86,112)
( 87,111)( 88,110)( 89,117)( 90,120)( 91,119)( 92,118)( 93,113)( 94,116)
( 95,115)( 96,114)( 97,141)( 98,144)( 99,143)(100,142)(101,137)(102,140)
(103,139)(104,138)(105,133)(106,136)(107,135)(108,134)(145,229)(146,232)
(147,231)(148,230)(149,237)(150,240)(151,239)(152,238)(153,233)(154,236)
(155,235)(156,234)(157,217)(158,220)(159,219)(160,218)(161,225)(162,228)
(163,227)(164,226)(165,221)(166,224)(167,223)(168,222)(169,249)(170,252)
(171,251)(172,250)(173,245)(174,248)(175,247)(176,246)(177,241)(178,244)
(179,243)(180,242)(181,265)(182,268)(183,267)(184,266)(185,273)(186,276)
(187,275)(188,274)(189,269)(190,272)(191,271)(192,270)(193,253)(194,256)
(195,255)(196,254)(197,261)(198,264)(199,263)(200,262)(201,257)(202,260)
(203,259)(204,258)(205,285)(206,288)(207,287)(208,286)(209,281)(210,284)
(211,283)(212,282)(213,277)(214,280)(215,279)(216,278);;
s3 := ( 1,145)( 2,146)( 3,147)( 4,148)( 5,149)( 6,150)( 7,151)( 8,152)
( 9,153)( 10,154)( 11,155)( 12,156)( 13,157)( 14,158)( 15,159)( 16,160)
( 17,161)( 18,162)( 19,163)( 20,164)( 21,165)( 22,166)( 23,167)( 24,168)
( 25,169)( 26,170)( 27,171)( 28,172)( 29,173)( 30,174)( 31,175)( 32,176)
( 33,177)( 34,178)( 35,179)( 36,180)( 37,181)( 38,182)( 39,183)( 40,184)
( 41,185)( 42,186)( 43,187)( 44,188)( 45,189)( 46,190)( 47,191)( 48,192)
( 49,193)( 50,194)( 51,195)( 52,196)( 53,197)( 54,198)( 55,199)( 56,200)
( 57,201)( 58,202)( 59,203)( 60,204)( 61,205)( 62,206)( 63,207)( 64,208)
( 65,209)( 66,210)( 67,211)( 68,212)( 69,213)( 70,214)( 71,215)( 72,216)
( 73,253)( 74,254)( 75,255)( 76,256)( 77,257)( 78,258)( 79,259)( 80,260)
( 81,261)( 82,262)( 83,263)( 84,264)( 85,265)( 86,266)( 87,267)( 88,268)
( 89,269)( 90,270)( 91,271)( 92,272)( 93,273)( 94,274)( 95,275)( 96,276)
( 97,277)( 98,278)( 99,279)(100,280)(101,281)(102,282)(103,283)(104,284)
(105,285)(106,286)(107,287)(108,288)(109,217)(110,218)(111,219)(112,220)
(113,221)(114,222)(115,223)(116,224)(117,225)(118,226)(119,227)(120,228)
(121,229)(122,230)(123,231)(124,232)(125,233)(126,234)(127,235)(128,236)
(129,237)(130,238)(131,239)(132,240)(133,241)(134,242)(135,243)(136,244)
(137,245)(138,246)(139,247)(140,248)(141,249)(142,250)(143,251)(144,252);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(288)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 15)
( 14, 16)( 17, 19)( 18, 20)( 21, 23)( 22, 24)( 25, 27)( 26, 28)( 29, 31)
( 30, 32)( 33, 35)( 34, 36)( 37, 39)( 38, 40)( 41, 43)( 42, 44)( 45, 47)
( 46, 48)( 49, 51)( 50, 52)( 53, 55)( 54, 56)( 57, 59)( 58, 60)( 61, 63)
( 62, 64)( 65, 67)( 66, 68)( 69, 71)( 70, 72)( 73, 75)( 74, 76)( 77, 79)
( 78, 80)( 81, 83)( 82, 84)( 85, 87)( 86, 88)( 89, 91)( 90, 92)( 93, 95)
( 94, 96)( 97, 99)( 98,100)(101,103)(102,104)(105,107)(106,108)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)
(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)
(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)
(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)
(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)
(190,192)(193,195)(194,196)(197,199)(198,200)(201,203)(202,204)(205,207)
(206,208)(209,211)(210,212)(213,215)(214,216)(217,219)(218,220)(221,223)
(222,224)(225,227)(226,228)(229,231)(230,232)(233,235)(234,236)(237,239)
(238,240)(241,243)(242,244)(245,247)(246,248)(249,251)(250,252)(253,255)
(254,256)(257,259)(258,260)(261,263)(262,264)(265,267)(266,268)(269,271)
(270,272)(273,275)(274,276)(277,279)(278,280)(281,283)(282,284)(285,287)
(286,288);
s1 := Sym(288)!( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 13, 33)( 14, 34)
( 15, 36)( 16, 35)( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 25)( 22, 26)
( 23, 28)( 24, 27)( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 69)
( 50, 70)( 51, 72)( 52, 71)( 53, 65)( 54, 66)( 55, 68)( 56, 67)( 57, 61)
( 58, 62)( 59, 64)( 60, 63)( 75, 76)( 77, 81)( 78, 82)( 79, 84)( 80, 83)
( 85,105)( 86,106)( 87,108)( 88,107)( 89,101)( 90,102)( 91,104)( 92,103)
( 93, 97)( 94, 98)( 95,100)( 96, 99)(111,112)(113,117)(114,118)(115,120)
(116,119)(121,141)(122,142)(123,144)(124,143)(125,137)(126,138)(127,140)
(128,139)(129,133)(130,134)(131,136)(132,135)(147,148)(149,153)(150,154)
(151,156)(152,155)(157,177)(158,178)(159,180)(160,179)(161,173)(162,174)
(163,176)(164,175)(165,169)(166,170)(167,172)(168,171)(183,184)(185,189)
(186,190)(187,192)(188,191)(193,213)(194,214)(195,216)(196,215)(197,209)
(198,210)(199,212)(200,211)(201,205)(202,206)(203,208)(204,207)(219,220)
(221,225)(222,226)(223,228)(224,227)(229,249)(230,250)(231,252)(232,251)
(233,245)(234,246)(235,248)(236,247)(237,241)(238,242)(239,244)(240,243)
(255,256)(257,261)(258,262)(259,264)(260,263)(265,285)(266,286)(267,288)
(268,287)(269,281)(270,282)(271,284)(272,283)(273,277)(274,278)(275,280)
(276,279);
s2 := Sym(288)!( 1, 13)( 2, 16)( 3, 15)( 4, 14)( 5, 21)( 6, 24)( 7, 23)
( 8, 22)( 9, 17)( 10, 20)( 11, 19)( 12, 18)( 25, 33)( 26, 36)( 27, 35)
( 28, 34)( 30, 32)( 37, 49)( 38, 52)( 39, 51)( 40, 50)( 41, 57)( 42, 60)
( 43, 59)( 44, 58)( 45, 53)( 46, 56)( 47, 55)( 48, 54)( 61, 69)( 62, 72)
( 63, 71)( 64, 70)( 66, 68)( 73,121)( 74,124)( 75,123)( 76,122)( 77,129)
( 78,132)( 79,131)( 80,130)( 81,125)( 82,128)( 83,127)( 84,126)( 85,109)
( 86,112)( 87,111)( 88,110)( 89,117)( 90,120)( 91,119)( 92,118)( 93,113)
( 94,116)( 95,115)( 96,114)( 97,141)( 98,144)( 99,143)(100,142)(101,137)
(102,140)(103,139)(104,138)(105,133)(106,136)(107,135)(108,134)(145,229)
(146,232)(147,231)(148,230)(149,237)(150,240)(151,239)(152,238)(153,233)
(154,236)(155,235)(156,234)(157,217)(158,220)(159,219)(160,218)(161,225)
(162,228)(163,227)(164,226)(165,221)(166,224)(167,223)(168,222)(169,249)
(170,252)(171,251)(172,250)(173,245)(174,248)(175,247)(176,246)(177,241)
(178,244)(179,243)(180,242)(181,265)(182,268)(183,267)(184,266)(185,273)
(186,276)(187,275)(188,274)(189,269)(190,272)(191,271)(192,270)(193,253)
(194,256)(195,255)(196,254)(197,261)(198,264)(199,263)(200,262)(201,257)
(202,260)(203,259)(204,258)(205,285)(206,288)(207,287)(208,286)(209,281)
(210,284)(211,283)(212,282)(213,277)(214,280)(215,279)(216,278);
s3 := Sym(288)!( 1,145)( 2,146)( 3,147)( 4,148)( 5,149)( 6,150)( 7,151)
( 8,152)( 9,153)( 10,154)( 11,155)( 12,156)( 13,157)( 14,158)( 15,159)
( 16,160)( 17,161)( 18,162)( 19,163)( 20,164)( 21,165)( 22,166)( 23,167)
( 24,168)( 25,169)( 26,170)( 27,171)( 28,172)( 29,173)( 30,174)( 31,175)
( 32,176)( 33,177)( 34,178)( 35,179)( 36,180)( 37,181)( 38,182)( 39,183)
( 40,184)( 41,185)( 42,186)( 43,187)( 44,188)( 45,189)( 46,190)( 47,191)
( 48,192)( 49,193)( 50,194)( 51,195)( 52,196)( 53,197)( 54,198)( 55,199)
( 56,200)( 57,201)( 58,202)( 59,203)( 60,204)( 61,205)( 62,206)( 63,207)
( 64,208)( 65,209)( 66,210)( 67,211)( 68,212)( 69,213)( 70,214)( 71,215)
( 72,216)( 73,253)( 74,254)( 75,255)( 76,256)( 77,257)( 78,258)( 79,259)
( 80,260)( 81,261)( 82,262)( 83,263)( 84,264)( 85,265)( 86,266)( 87,267)
( 88,268)( 89,269)( 90,270)( 91,271)( 92,272)( 93,273)( 94,274)( 95,275)
( 96,276)( 97,277)( 98,278)( 99,279)(100,280)(101,281)(102,282)(103,283)
(104,284)(105,285)(106,286)(107,287)(108,288)(109,217)(110,218)(111,219)
(112,220)(113,221)(114,222)(115,223)(116,224)(117,225)(118,226)(119,227)
(120,228)(121,229)(122,230)(123,231)(124,232)(125,233)(126,234)(127,235)
(128,236)(129,237)(130,238)(131,239)(132,240)(133,241)(134,242)(135,243)
(136,244)(137,245)(138,246)(139,247)(140,248)(141,249)(142,250)(143,251)
(144,252);
poly := sub<Sym(288)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope