include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,12,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,3}*1152a
if this polytope has a name.
Group : SmallGroup(1152,155790)
Rank : 4
Schlafli Type : {4,12,3}
Number of vertices, edges, etc : 8, 96, 72, 6
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 4
Special Properties :
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,4,3}*384b
4-fold quotients : {2,12,3}*288
6-fold quotients : {4,4,3}*192a
12-fold quotients : {2,4,3}*96
16-fold quotients : {2,6,3}*72
24-fold quotients : {2,4,3}*48
48-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(21,22)(23,24)(25,27)(26,28)
(29,32)(30,31)(37,38)(39,40)(41,43)(42,44)(45,48)(46,47);;
s1 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,41)(18,42)
(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,33)(26,34)(27,35)(28,36)(29,37)
(30,38)(31,39)(32,40);;
s2 := ( 1,17)( 2,18)( 3,20)( 4,19)( 5,21)( 6,22)( 7,24)( 8,23)( 9,29)(10,30)
(11,32)(12,31)(13,25)(14,26)(15,28)(16,27)(35,36)(39,40)(41,45)(42,46)(43,48)
(44,47);;
s3 := ( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(17,33)(18,36)(19,35)(20,34)
(21,45)(22,48)(23,47)(24,46)(25,41)(26,44)(27,43)(28,42)(29,37)(30,40)(31,39)
(32,38);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s3*s1*s2*s1*s0*s1*s2*s3*s1*s2*s1,
s3*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(48)!( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(21,22)(23,24)(25,27)
(26,28)(29,32)(30,31)(37,38)(39,40)(41,43)(42,44)(45,48)(46,47);
s1 := Sym(48)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,41)
(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,33)(26,34)(27,35)(28,36)
(29,37)(30,38)(31,39)(32,40);
s2 := Sym(48)!( 1,17)( 2,18)( 3,20)( 4,19)( 5,21)( 6,22)( 7,24)( 8,23)( 9,29)
(10,30)(11,32)(12,31)(13,25)(14,26)(15,28)(16,27)(35,36)(39,40)(41,45)(42,46)
(43,48)(44,47);
s3 := Sym(48)!( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(17,33)(18,36)(19,35)
(20,34)(21,45)(22,48)(23,47)(24,46)(25,41)(26,44)(27,43)(28,42)(29,37)(30,40)
(31,39)(32,38);
poly := sub<Sym(48)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s3*s1*s2*s1*s0*s1*s2*s3*s1*s2*s1,
s3*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 >;
References : None.
to this polytope