Polytope of Type {6,3,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3,4}*1152a
if this polytope has a name.
Group : SmallGroup(1152,155790)
Rank : 4
Schlafli Type : {6,3,4}
Number of vertices, edges, etc : 24, 72, 48, 8
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 4
Special Properties :
   Locally Toroidal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,3,4}*384b
   4-fold quotients : {6,3,2}*288
   6-fold quotients : {3,3,4}*192
   12-fold quotients : {6,3,2}*96
   16-fold quotients : {6,3,2}*72
   24-fold quotients : {3,3,2}*48
   48-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)
(27,32)(28,31)(35,36)(39,40)(41,45)(42,46)(43,48)(44,47);;
s1 := ( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(17,33)(18,36)(19,35)(20,34)
(21,45)(22,48)(23,47)(24,46)(25,41)(26,44)(27,43)(28,42)(29,37)(30,40)(31,39)
(32,38);;
s2 := ( 1,21)( 2,22)( 3,24)( 4,23)( 5,17)( 6,18)( 7,20)( 8,19)( 9,25)(10,26)
(11,28)(12,27)(13,29)(14,30)(15,32)(16,31)(33,37)(34,38)(35,40)(36,39)(43,44)
(47,48);;
s3 := ( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(21,22)(23,24)(25,27)(26,28)
(29,32)(30,31)(37,38)(39,40)(41,43)(42,44)(45,48)(46,47);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s3*s1*s2*s3*s1*s2*s3*s1*s0*s1*s2*s3*s2*s1*s2, 
s0*s1*s2*s3*s2*s1*s0*s1*s0*s1*s2*s3*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(48)!( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)
(26,30)(27,32)(28,31)(35,36)(39,40)(41,45)(42,46)(43,48)(44,47);
s1 := Sym(48)!( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(17,33)(18,36)(19,35)
(20,34)(21,45)(22,48)(23,47)(24,46)(25,41)(26,44)(27,43)(28,42)(29,37)(30,40)
(31,39)(32,38);
s2 := Sym(48)!( 1,21)( 2,22)( 3,24)( 4,23)( 5,17)( 6,18)( 7,20)( 8,19)( 9,25)
(10,26)(11,28)(12,27)(13,29)(14,30)(15,32)(16,31)(33,37)(34,38)(35,40)(36,39)
(43,44)(47,48);
s3 := Sym(48)!( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(21,22)(23,24)(25,27)
(26,28)(29,32)(30,31)(37,38)(39,40)(41,43)(42,44)(45,48)(46,47);
poly := sub<Sym(48)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s3*s1*s2*s3*s1*s2*s3*s1*s0*s1*s2*s3*s2*s1*s2, 
s0*s1*s2*s3*s2*s1*s0*s1*s0*s1*s2*s3*s2*s1*s0*s1, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope