include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,6,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6,3}*1152
if this polytope has a name.
Group : SmallGroup(1152,155790)
Rank : 4
Schlafli Type : {12,6,3}
Number of vertices, edges, etc : 24, 96, 24, 4
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 4
Special Properties :
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {4,6,3}*384b
4-fold quotients : {6,6,3}*288
6-fold quotients : {4,3,3}*192
12-fold quotients : {2,6,3}*96
24-fold quotients : {2,3,3}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(17,33)(18,34)(19,35)(20,36)
(21,38)(22,37)(23,40)(24,39)(25,43)(26,44)(27,41)(28,42)(29,48)(30,47)(31,46)
(32,45);;
s1 := ( 1,21)( 2,22)( 3,24)( 4,23)( 5,17)( 6,18)( 7,20)( 8,19)( 9,25)(10,26)
(11,28)(12,27)(13,29)(14,30)(15,32)(16,31)(33,37)(34,38)(35,40)(36,39)(43,44)
(47,48);;
s2 := ( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(18,20)(21,29)(22,32)(23,31)
(24,30)(26,28)(34,36)(37,45)(38,48)(39,47)(40,46)(42,44);;
s3 := ( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)
(27,32)(28,31)(35,36)(39,40)(41,45)(42,46)(43,48)(44,47);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3,
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s3*s2*s1*s0*s1*s2*s3*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(48)!( 5, 6)( 7, 8)( 9,11)(10,12)(13,16)(14,15)(17,33)(18,34)(19,35)
(20,36)(21,38)(22,37)(23,40)(24,39)(25,43)(26,44)(27,41)(28,42)(29,48)(30,47)
(31,46)(32,45);
s1 := Sym(48)!( 1,21)( 2,22)( 3,24)( 4,23)( 5,17)( 6,18)( 7,20)( 8,19)( 9,25)
(10,26)(11,28)(12,27)(13,29)(14,30)(15,32)(16,31)(33,37)(34,38)(35,40)(36,39)
(43,44)(47,48);
s2 := Sym(48)!( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(18,20)(21,29)(22,32)
(23,31)(24,30)(26,28)(34,36)(37,45)(38,48)(39,47)(40,46)(42,44);
s3 := Sym(48)!( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)
(26,30)(27,32)(28,31)(35,36)(39,40)(41,45)(42,46)(43,48)(44,47);
poly := sub<Sym(48)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s3*s2*s1*s0*s1*s2*s3*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1 >;
References : None.
to this polytope