include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,18,4,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,18,4,2,2}*1152b
if this polytope has a name.
Group : SmallGroup(1152,157448)
Rank : 6
Schlafli Type : {2,18,4,2,2}
Number of vertices, edges, etc : 2, 18, 36, 4, 2, 2
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,9,4,2,2}*576
3-fold quotients : {2,6,4,2,2}*384c
6-fold quotients : {2,3,4,2,2}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(15,31)(16,33)(17,32)(18,34)(19,27)
(20,29)(21,28)(22,30)(23,35)(24,37)(25,36)(26,38)(40,41)(43,47)(44,49)(45,48)
(46,50)(51,67)(52,69)(53,68)(54,70)(55,63)(56,65)(57,64)(58,66)(59,71)(60,73)
(61,72)(62,74);;
s2 := ( 3,51)( 4,52)( 5,54)( 6,53)( 7,59)( 8,60)( 9,62)(10,61)(11,55)(12,56)
(13,58)(14,57)(15,39)(16,40)(17,42)(18,41)(19,47)(20,48)(21,50)(22,49)(23,43)
(24,44)(25,46)(26,45)(27,67)(28,68)(29,70)(30,69)(31,63)(32,64)(33,66)(34,65)
(35,71)(36,72)(37,74)(38,73);;
s3 := ( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)(15,18)(16,17)(19,22)(20,21)
(23,26)(24,25)(27,30)(28,29)(31,34)(32,33)(35,38)(36,37)(39,42)(40,41)(43,46)
(44,45)(47,50)(48,49)(51,54)(52,53)(55,58)(56,57)(59,62)(60,61)(63,66)(64,65)
(67,70)(68,69)(71,74)(72,73);;
s4 := (75,76);;
s5 := (77,78);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s3*s2*s3*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(78)!(1,2);
s1 := Sym(78)!( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(15,31)(16,33)(17,32)(18,34)
(19,27)(20,29)(21,28)(22,30)(23,35)(24,37)(25,36)(26,38)(40,41)(43,47)(44,49)
(45,48)(46,50)(51,67)(52,69)(53,68)(54,70)(55,63)(56,65)(57,64)(58,66)(59,71)
(60,73)(61,72)(62,74);
s2 := Sym(78)!( 3,51)( 4,52)( 5,54)( 6,53)( 7,59)( 8,60)( 9,62)(10,61)(11,55)
(12,56)(13,58)(14,57)(15,39)(16,40)(17,42)(18,41)(19,47)(20,48)(21,50)(22,49)
(23,43)(24,44)(25,46)(26,45)(27,67)(28,68)(29,70)(30,69)(31,63)(32,64)(33,66)
(34,65)(35,71)(36,72)(37,74)(38,73);
s3 := Sym(78)!( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)(15,18)(16,17)(19,22)
(20,21)(23,26)(24,25)(27,30)(28,29)(31,34)(32,33)(35,38)(36,37)(39,42)(40,41)
(43,46)(44,45)(47,50)(48,49)(51,54)(52,53)(55,58)(56,57)(59,62)(60,61)(63,66)
(64,65)(67,70)(68,69)(71,74)(72,73);
s4 := Sym(78)!(75,76);
s5 := Sym(78)!(77,78);
poly := sub<Sym(78)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s3*s2*s3*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope