Polytope of Type {2,4,9,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,9,4}*1152a
if this polytope has a name.
Group : SmallGroup(1152,157449)
Rank : 5
Schlafli Type : {2,4,9,4}
Number of vertices, edges, etc : 2, 4, 36, 36, 8
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,9,4}*576
   3-fold quotients : {2,4,3,4}*384a
   4-fold quotients : {2,4,9,2}*288
   6-fold quotients : {2,4,3,4}*192
   12-fold quotients : {2,4,3,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)(  8, 16)(  9, 17)( 10, 18)
( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)( 24, 32)( 25, 33)( 26, 34)
( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)( 41, 49)( 42, 50)
( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)( 56, 64)( 57, 65)( 58, 66)
( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)( 73, 81)( 74, 82)
( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)( 89, 97)( 90, 98)
( 99,107)(100,108)(101,109)(102,110)(103,111)(104,112)(105,113)(106,114)
(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)(121,129)(122,130)
(131,139)(132,140)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146)
(147,155)(148,156)(149,157)(150,158)(151,159)(152,160)(153,161)(154,162)
(163,171)(164,172)(165,173)(166,174)(167,175)(168,176)(169,177)(170,178)
(179,187)(180,188)(181,189)(182,190)(183,191)(184,192)(185,193)(186,194)
(195,203)(196,204)(197,205)(198,206)(199,207)(200,208)(201,209)(202,210)
(211,219)(212,220)(213,221)(214,222)(215,223)(216,224)(217,225)(218,226)
(227,235)(228,236)(229,237)(230,238)(231,239)(232,240)(233,241)(234,242)
(243,251)(244,252)(245,253)(246,254)(247,255)(248,256)(249,257)(250,258)
(259,267)(260,268)(261,269)(262,270)(263,271)(264,272)(265,273)(266,274)
(275,283)(276,284)(277,285)(278,286)(279,287)(280,288)(281,289)(282,290);;
s2 := (  3, 51)(  4, 54)(  5, 53)(  6, 52)(  7, 59)(  8, 62)(  9, 61)( 10, 60)
( 11, 55)( 12, 58)( 13, 57)( 14, 56)( 15, 63)( 16, 66)( 17, 65)( 18, 64)
( 19, 83)( 20, 86)( 21, 85)( 22, 84)( 23, 91)( 24, 94)( 25, 93)( 26, 92)
( 27, 87)( 28, 90)( 29, 89)( 30, 88)( 31, 95)( 32, 98)( 33, 97)( 34, 96)
( 35, 67)( 36, 70)( 37, 69)( 38, 68)( 39, 75)( 40, 78)( 41, 77)( 42, 76)
( 43, 71)( 44, 74)( 45, 73)( 46, 72)( 47, 79)( 48, 82)( 49, 81)( 50, 80)
( 99,115)(100,118)(101,117)(102,116)(103,123)(104,126)(105,125)(106,124)
(107,119)(108,122)(109,121)(110,120)(111,127)(112,130)(113,129)(114,128)
(132,134)(135,139)(136,142)(137,141)(138,140)(144,146)(147,195)(148,198)
(149,197)(150,196)(151,203)(152,206)(153,205)(154,204)(155,199)(156,202)
(157,201)(158,200)(159,207)(160,210)(161,209)(162,208)(163,227)(164,230)
(165,229)(166,228)(167,235)(168,238)(169,237)(170,236)(171,231)(172,234)
(173,233)(174,232)(175,239)(176,242)(177,241)(178,240)(179,211)(180,214)
(181,213)(182,212)(183,219)(184,222)(185,221)(186,220)(187,215)(188,218)
(189,217)(190,216)(191,223)(192,226)(193,225)(194,224)(243,259)(244,262)
(245,261)(246,260)(247,267)(248,270)(249,269)(250,268)(251,263)(252,266)
(253,265)(254,264)(255,271)(256,274)(257,273)(258,272)(276,278)(279,283)
(280,286)(281,285)(282,284)(288,290);;
s3 := (  5,  6)(  7, 15)(  8, 16)(  9, 18)( 10, 17)( 13, 14)( 19, 35)( 20, 36)
( 21, 38)( 22, 37)( 23, 47)( 24, 48)( 25, 50)( 26, 49)( 27, 43)( 28, 44)
( 29, 46)( 30, 45)( 31, 39)( 32, 40)( 33, 42)( 34, 41)( 51,115)( 52,116)
( 53,118)( 54,117)( 55,127)( 56,128)( 57,130)( 58,129)( 59,123)( 60,124)
( 61,126)( 62,125)( 63,119)( 64,120)( 65,122)( 66,121)( 67, 99)( 68,100)
( 69,102)( 70,101)( 71,111)( 72,112)( 73,114)( 74,113)( 75,107)( 76,108)
( 77,110)( 78,109)( 79,103)( 80,104)( 81,106)( 82,105)( 83,131)( 84,132)
( 85,134)( 86,133)( 87,143)( 88,144)( 89,146)( 90,145)( 91,139)( 92,140)
( 93,142)( 94,141)( 95,135)( 96,136)( 97,138)( 98,137)(149,150)(151,159)
(152,160)(153,162)(154,161)(157,158)(163,179)(164,180)(165,182)(166,181)
(167,191)(168,192)(169,194)(170,193)(171,187)(172,188)(173,190)(174,189)
(175,183)(176,184)(177,186)(178,185)(195,259)(196,260)(197,262)(198,261)
(199,271)(200,272)(201,274)(202,273)(203,267)(204,268)(205,270)(206,269)
(207,263)(208,264)(209,266)(210,265)(211,243)(212,244)(213,246)(214,245)
(215,255)(216,256)(217,258)(218,257)(219,251)(220,252)(221,254)(222,253)
(223,247)(224,248)(225,250)(226,249)(227,275)(228,276)(229,278)(230,277)
(231,287)(232,288)(233,290)(234,289)(235,283)(236,284)(237,286)(238,285)
(239,279)(240,280)(241,282)(242,281);;
s4 := (  3,149)(  4,150)(  5,147)(  6,148)(  7,153)(  8,154)(  9,151)( 10,152)
( 11,157)( 12,158)( 13,155)( 14,156)( 15,161)( 16,162)( 17,159)( 18,160)
( 19,165)( 20,166)( 21,163)( 22,164)( 23,169)( 24,170)( 25,167)( 26,168)
( 27,173)( 28,174)( 29,171)( 30,172)( 31,177)( 32,178)( 33,175)( 34,176)
( 35,181)( 36,182)( 37,179)( 38,180)( 39,185)( 40,186)( 41,183)( 42,184)
( 43,189)( 44,190)( 45,187)( 46,188)( 47,193)( 48,194)( 49,191)( 50,192)
( 51,197)( 52,198)( 53,195)( 54,196)( 55,201)( 56,202)( 57,199)( 58,200)
( 59,205)( 60,206)( 61,203)( 62,204)( 63,209)( 64,210)( 65,207)( 66,208)
( 67,213)( 68,214)( 69,211)( 70,212)( 71,217)( 72,218)( 73,215)( 74,216)
( 75,221)( 76,222)( 77,219)( 78,220)( 79,225)( 80,226)( 81,223)( 82,224)
( 83,229)( 84,230)( 85,227)( 86,228)( 87,233)( 88,234)( 89,231)( 90,232)
( 91,237)( 92,238)( 93,235)( 94,236)( 95,241)( 96,242)( 97,239)( 98,240)
( 99,245)(100,246)(101,243)(102,244)(103,249)(104,250)(105,247)(106,248)
(107,253)(108,254)(109,251)(110,252)(111,257)(112,258)(113,255)(114,256)
(115,261)(116,262)(117,259)(118,260)(119,265)(120,266)(121,263)(122,264)
(123,269)(124,270)(125,267)(126,268)(127,273)(128,274)(129,271)(130,272)
(131,277)(132,278)(133,275)(134,276)(135,281)(136,282)(137,279)(138,280)
(139,285)(140,286)(141,283)(142,284)(143,289)(144,290)(145,287)(146,288);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s3*s2*s1*s2*s3*s1*s2, s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(290)!(1,2);
s1 := Sym(290)!(  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)(  8, 16)(  9, 17)
( 10, 18)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)( 24, 32)( 25, 33)
( 26, 34)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)( 41, 49)
( 42, 50)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)( 56, 64)( 57, 65)
( 58, 66)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)( 73, 81)
( 74, 82)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)( 89, 97)
( 90, 98)( 99,107)(100,108)(101,109)(102,110)(103,111)(104,112)(105,113)
(106,114)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)(121,129)
(122,130)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144)(137,145)
(138,146)(147,155)(148,156)(149,157)(150,158)(151,159)(152,160)(153,161)
(154,162)(163,171)(164,172)(165,173)(166,174)(167,175)(168,176)(169,177)
(170,178)(179,187)(180,188)(181,189)(182,190)(183,191)(184,192)(185,193)
(186,194)(195,203)(196,204)(197,205)(198,206)(199,207)(200,208)(201,209)
(202,210)(211,219)(212,220)(213,221)(214,222)(215,223)(216,224)(217,225)
(218,226)(227,235)(228,236)(229,237)(230,238)(231,239)(232,240)(233,241)
(234,242)(243,251)(244,252)(245,253)(246,254)(247,255)(248,256)(249,257)
(250,258)(259,267)(260,268)(261,269)(262,270)(263,271)(264,272)(265,273)
(266,274)(275,283)(276,284)(277,285)(278,286)(279,287)(280,288)(281,289)
(282,290);
s2 := Sym(290)!(  3, 51)(  4, 54)(  5, 53)(  6, 52)(  7, 59)(  8, 62)(  9, 61)
( 10, 60)( 11, 55)( 12, 58)( 13, 57)( 14, 56)( 15, 63)( 16, 66)( 17, 65)
( 18, 64)( 19, 83)( 20, 86)( 21, 85)( 22, 84)( 23, 91)( 24, 94)( 25, 93)
( 26, 92)( 27, 87)( 28, 90)( 29, 89)( 30, 88)( 31, 95)( 32, 98)( 33, 97)
( 34, 96)( 35, 67)( 36, 70)( 37, 69)( 38, 68)( 39, 75)( 40, 78)( 41, 77)
( 42, 76)( 43, 71)( 44, 74)( 45, 73)( 46, 72)( 47, 79)( 48, 82)( 49, 81)
( 50, 80)( 99,115)(100,118)(101,117)(102,116)(103,123)(104,126)(105,125)
(106,124)(107,119)(108,122)(109,121)(110,120)(111,127)(112,130)(113,129)
(114,128)(132,134)(135,139)(136,142)(137,141)(138,140)(144,146)(147,195)
(148,198)(149,197)(150,196)(151,203)(152,206)(153,205)(154,204)(155,199)
(156,202)(157,201)(158,200)(159,207)(160,210)(161,209)(162,208)(163,227)
(164,230)(165,229)(166,228)(167,235)(168,238)(169,237)(170,236)(171,231)
(172,234)(173,233)(174,232)(175,239)(176,242)(177,241)(178,240)(179,211)
(180,214)(181,213)(182,212)(183,219)(184,222)(185,221)(186,220)(187,215)
(188,218)(189,217)(190,216)(191,223)(192,226)(193,225)(194,224)(243,259)
(244,262)(245,261)(246,260)(247,267)(248,270)(249,269)(250,268)(251,263)
(252,266)(253,265)(254,264)(255,271)(256,274)(257,273)(258,272)(276,278)
(279,283)(280,286)(281,285)(282,284)(288,290);
s3 := Sym(290)!(  5,  6)(  7, 15)(  8, 16)(  9, 18)( 10, 17)( 13, 14)( 19, 35)
( 20, 36)( 21, 38)( 22, 37)( 23, 47)( 24, 48)( 25, 50)( 26, 49)( 27, 43)
( 28, 44)( 29, 46)( 30, 45)( 31, 39)( 32, 40)( 33, 42)( 34, 41)( 51,115)
( 52,116)( 53,118)( 54,117)( 55,127)( 56,128)( 57,130)( 58,129)( 59,123)
( 60,124)( 61,126)( 62,125)( 63,119)( 64,120)( 65,122)( 66,121)( 67, 99)
( 68,100)( 69,102)( 70,101)( 71,111)( 72,112)( 73,114)( 74,113)( 75,107)
( 76,108)( 77,110)( 78,109)( 79,103)( 80,104)( 81,106)( 82,105)( 83,131)
( 84,132)( 85,134)( 86,133)( 87,143)( 88,144)( 89,146)( 90,145)( 91,139)
( 92,140)( 93,142)( 94,141)( 95,135)( 96,136)( 97,138)( 98,137)(149,150)
(151,159)(152,160)(153,162)(154,161)(157,158)(163,179)(164,180)(165,182)
(166,181)(167,191)(168,192)(169,194)(170,193)(171,187)(172,188)(173,190)
(174,189)(175,183)(176,184)(177,186)(178,185)(195,259)(196,260)(197,262)
(198,261)(199,271)(200,272)(201,274)(202,273)(203,267)(204,268)(205,270)
(206,269)(207,263)(208,264)(209,266)(210,265)(211,243)(212,244)(213,246)
(214,245)(215,255)(216,256)(217,258)(218,257)(219,251)(220,252)(221,254)
(222,253)(223,247)(224,248)(225,250)(226,249)(227,275)(228,276)(229,278)
(230,277)(231,287)(232,288)(233,290)(234,289)(235,283)(236,284)(237,286)
(238,285)(239,279)(240,280)(241,282)(242,281);
s4 := Sym(290)!(  3,149)(  4,150)(  5,147)(  6,148)(  7,153)(  8,154)(  9,151)
( 10,152)( 11,157)( 12,158)( 13,155)( 14,156)( 15,161)( 16,162)( 17,159)
( 18,160)( 19,165)( 20,166)( 21,163)( 22,164)( 23,169)( 24,170)( 25,167)
( 26,168)( 27,173)( 28,174)( 29,171)( 30,172)( 31,177)( 32,178)( 33,175)
( 34,176)( 35,181)( 36,182)( 37,179)( 38,180)( 39,185)( 40,186)( 41,183)
( 42,184)( 43,189)( 44,190)( 45,187)( 46,188)( 47,193)( 48,194)( 49,191)
( 50,192)( 51,197)( 52,198)( 53,195)( 54,196)( 55,201)( 56,202)( 57,199)
( 58,200)( 59,205)( 60,206)( 61,203)( 62,204)( 63,209)( 64,210)( 65,207)
( 66,208)( 67,213)( 68,214)( 69,211)( 70,212)( 71,217)( 72,218)( 73,215)
( 74,216)( 75,221)( 76,222)( 77,219)( 78,220)( 79,225)( 80,226)( 81,223)
( 82,224)( 83,229)( 84,230)( 85,227)( 86,228)( 87,233)( 88,234)( 89,231)
( 90,232)( 91,237)( 92,238)( 93,235)( 94,236)( 95,241)( 96,242)( 97,239)
( 98,240)( 99,245)(100,246)(101,243)(102,244)(103,249)(104,250)(105,247)
(106,248)(107,253)(108,254)(109,251)(110,252)(111,257)(112,258)(113,255)
(114,256)(115,261)(116,262)(117,259)(118,260)(119,265)(120,266)(121,263)
(122,264)(123,269)(124,270)(125,267)(126,268)(127,273)(128,274)(129,271)
(130,272)(131,277)(132,278)(133,275)(134,276)(135,281)(136,282)(137,279)
(138,280)(139,285)(140,286)(141,283)(142,284)(143,289)(144,290)(145,287)
(146,288);
poly := sub<Sym(290)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s1*s2, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope