include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,2,12,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,12,4}*1152b
if this polytope has a name.
Group : SmallGroup(1152,157549)
Rank : 6
Schlafli Type : {3,2,2,12,4}
Number of vertices, edges, etc : 3, 3, 2, 12, 24, 4
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,2,6,4}*576c
4-fold quotients : {3,2,2,3,4}*288
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := ( 7, 8)( 9,10)(11,21)(13,17)(14,16)(15,29)(18,34)(19,37)(20,22)(23,39)
(24,25)(26,42)(27,45)(28,35)(30,33)(31,49)(32,46)(36,48)(40,51)(41,43)(44,53)
(47,50);;
s4 := ( 6,13)( 7, 9)( 8,24)(10,14)(11,48)(12,16)(15,39)(17,25)(18,53)(19,47)
(20,31)(21,30)(22,34)(23,28)(26,49)(27,38)(29,43)(32,52)(33,44)(35,42)(36,41)
(37,46)(40,50)(45,51);;
s5 := ( 6,38)( 7,47)( 8,50)( 9,39)(10,23)(11,21)(12,52)(13,48)(14,31)(15,34)
(16,49)(17,36)(18,29)(19,22)(20,37)(24,53)(25,44)(26,42)(27,30)(28,46)(32,35)
(33,45)(40,43)(41,51);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5*s4*s5,
s5*s4*s3*s5*s4*s5*s4*s3*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(53)!(2,3);
s1 := Sym(53)!(1,2);
s2 := Sym(53)!(4,5);
s3 := Sym(53)!( 7, 8)( 9,10)(11,21)(13,17)(14,16)(15,29)(18,34)(19,37)(20,22)
(23,39)(24,25)(26,42)(27,45)(28,35)(30,33)(31,49)(32,46)(36,48)(40,51)(41,43)
(44,53)(47,50);
s4 := Sym(53)!( 6,13)( 7, 9)( 8,24)(10,14)(11,48)(12,16)(15,39)(17,25)(18,53)
(19,47)(20,31)(21,30)(22,34)(23,28)(26,49)(27,38)(29,43)(32,52)(33,44)(35,42)
(36,41)(37,46)(40,50)(45,51);
s5 := Sym(53)!( 6,38)( 7,47)( 8,50)( 9,39)(10,23)(11,21)(12,52)(13,48)(14,31)
(15,34)(16,49)(17,36)(18,29)(19,22)(20,37)(24,53)(25,44)(26,42)(27,30)(28,46)
(32,35)(33,45)(40,43)(41,51);
poly := sub<Sym(53)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5*s4*s5,
s5*s4*s3*s5*s4*s5*s4*s3*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope