Polytope of Type {12,3,2,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,3,2,6}*1152
if this polytope has a name.
Group : SmallGroup(1152,157603)
Rank : 5
Schlafli Type : {12,3,2,6}
Number of vertices, edges, etc : 16, 24, 4, 6, 6
Order of s0s1s2s3s4 : 24
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,3,2,3}*576, {6,3,2,6}*576
   3-fold quotients : {12,3,2,2}*384
   4-fold quotients : {3,3,2,6}*288, {6,3,2,3}*288
   6-fold quotients : {6,3,2,2}*192
   8-fold quotients : {3,3,2,3}*144
   12-fold quotients : {3,3,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6,19)( 7,22)( 9,14)(10,13)(11,31)(12,34)(15,37)(16,38)
(17,23)(18,20)(21,42)(24,41)(25,26)(27,43)(28,45)(29,32)(30,35)(33,47)(36,48)
(39,40);;
s1 := ( 1, 9)( 2, 4)( 3,25)( 5,10)( 6,48)( 7,47)( 8,13)(11,42)(12,41)(14,26)
(15,46)(16,44)(17,36)(18,33)(19,32)(20,34)(21,30)(22,35)(23,31)(24,29)(27,40)
(28,39)(37,43)(38,45);;
s2 := ( 1,46)( 2,40)( 3,39)( 4,36)( 5,48)( 6,11)( 7,12)( 8,44)( 9,24)(10,42)
(13,21)(14,41)(15,29)(16,30)(17,27)(18,28)(19,31)(20,45)(22,34)(23,43)(25,33)
(26,47)(32,37)(35,38);;
s3 := (51,52)(53,54);;
s4 := (49,53)(50,51)(52,54);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(54)!( 2, 3)( 4, 5)( 6,19)( 7,22)( 9,14)(10,13)(11,31)(12,34)(15,37)
(16,38)(17,23)(18,20)(21,42)(24,41)(25,26)(27,43)(28,45)(29,32)(30,35)(33,47)
(36,48)(39,40);
s1 := Sym(54)!( 1, 9)( 2, 4)( 3,25)( 5,10)( 6,48)( 7,47)( 8,13)(11,42)(12,41)
(14,26)(15,46)(16,44)(17,36)(18,33)(19,32)(20,34)(21,30)(22,35)(23,31)(24,29)
(27,40)(28,39)(37,43)(38,45);
s2 := Sym(54)!( 1,46)( 2,40)( 3,39)( 4,36)( 5,48)( 6,11)( 7,12)( 8,44)( 9,24)
(10,42)(13,21)(14,41)(15,29)(16,30)(17,27)(18,28)(19,31)(20,45)(22,34)(23,43)
(25,33)(26,47)(32,37)(35,38);
s3 := Sym(54)!(51,52)(53,54);
s4 := Sym(54)!(49,53)(50,51)(52,54);
poly := sub<Sym(54)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope