include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,8,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,8,6}*1152c
if this polytope has a name.
Group : SmallGroup(1152,157621)
Rank : 5
Schlafli Type : {3,2,8,6}
Number of vertices, edges, etc : 3, 3, 16, 48, 12
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,4,6}*576
4-fold quotients : {3,2,4,3}*288, {3,2,4,6}*288b, {3,2,4,6}*288c
8-fold quotients : {3,2,4,3}*144, {3,2,2,6}*144
16-fold quotients : {3,2,2,3}*72
24-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 4,14)( 5,15)( 6,13)( 7,12)( 8,18)( 9,19)(10,17)(11,16);;
s3 := ( 6, 8)( 7, 9)(10,11)(14,16)(15,17)(18,19);;
s4 := ( 6, 7)( 8,10)( 9,11)(12,13)(16,19)(17,18);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s3*s2*s3*s4*s3*s4*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(19)!(2,3);
s1 := Sym(19)!(1,2);
s2 := Sym(19)!( 4,14)( 5,15)( 6,13)( 7,12)( 8,18)( 9,19)(10,17)(11,16);
s3 := Sym(19)!( 6, 8)( 7, 9)(10,11)(14,16)(15,17)(18,19);
s4 := Sym(19)!( 6, 7)( 8,10)( 9,11)(12,13)(16,19)(17,18);
poly := sub<Sym(19)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s3*s2*s3*s4*s3*s4*s2*s3*s2*s3 >;
to this polytope