include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,6,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,6,4}*1152h
if this polytope has a name.
Group : SmallGroup(1152,157640)
Rank : 5
Schlafli Type : {4,6,6,4}
Number of vertices, edges, etc : 4, 12, 18, 12, 4
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,3,4}*576, {2,6,6,4}*576f
3-fold quotients : {4,2,6,4}*384b
4-fold quotients : {2,6,3,4}*288
6-fold quotients : {4,2,3,4}*192, {2,2,6,4}*192b
12-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 73)( 2, 74)( 3, 75)( 4, 76)( 5, 77)( 6, 78)( 7, 79)( 8, 80)
( 9, 81)( 10, 82)( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)( 16, 88)
( 17, 89)( 18, 90)( 19, 91)( 20, 92)( 21, 93)( 22, 94)( 23, 95)( 24, 96)
( 25, 97)( 26, 98)( 27, 99)( 28,100)( 29,101)( 30,102)( 31,103)( 32,104)
( 33,105)( 34,106)( 35,107)( 36,108)( 37,109)( 38,110)( 39,111)( 40,112)
( 41,113)( 42,114)( 43,115)( 44,116)( 45,117)( 46,118)( 47,119)( 48,120)
( 49,121)( 50,122)( 51,123)( 52,124)( 53,125)( 54,126)( 55,127)( 56,128)
( 57,129)( 58,130)( 59,131)( 60,132)( 61,133)( 62,134)( 63,135)( 64,136)
( 65,137)( 66,138)( 67,139)( 68,140)( 69,141)( 70,142)( 71,143)( 72,144)
(145,217)(146,218)(147,219)(148,220)(149,221)(150,222)(151,223)(152,224)
(153,225)(154,226)(155,227)(156,228)(157,229)(158,230)(159,231)(160,232)
(161,233)(162,234)(163,235)(164,236)(165,237)(166,238)(167,239)(168,240)
(169,241)(170,242)(171,243)(172,244)(173,245)(174,246)(175,247)(176,248)
(177,249)(178,250)(179,251)(180,252)(181,253)(182,254)(183,255)(184,256)
(185,257)(186,258)(187,259)(188,260)(189,261)(190,262)(191,263)(192,264)
(193,265)(194,266)(195,267)(196,268)(197,269)(198,270)(199,271)(200,272)
(201,273)(202,274)(203,275)(204,276)(205,277)(206,278)(207,279)(208,280)
(209,281)(210,282)(211,283)(212,284)(213,285)(214,286)(215,287)(216,288);;
s1 := ( 5, 9)( 6, 10)( 7, 11)( 8, 12)( 17, 21)( 18, 22)( 19, 23)( 20, 24)
( 29, 33)( 30, 34)( 31, 35)( 32, 36)( 41, 45)( 42, 46)( 43, 47)( 44, 48)
( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 69)( 66, 70)( 67, 71)( 68, 72)
( 73,109)( 74,110)( 75,111)( 76,112)( 77,117)( 78,118)( 79,119)( 80,120)
( 81,113)( 82,114)( 83,115)( 84,116)( 85,121)( 86,122)( 87,123)( 88,124)
( 89,129)( 90,130)( 91,131)( 92,132)( 93,125)( 94,126)( 95,127)( 96,128)
( 97,133)( 98,134)( 99,135)(100,136)(101,141)(102,142)(103,143)(104,144)
(105,137)(106,138)(107,139)(108,140)(149,153)(150,154)(151,155)(152,156)
(161,165)(162,166)(163,167)(164,168)(173,177)(174,178)(175,179)(176,180)
(185,189)(186,190)(187,191)(188,192)(197,201)(198,202)(199,203)(200,204)
(209,213)(210,214)(211,215)(212,216)(217,253)(218,254)(219,255)(220,256)
(221,261)(222,262)(223,263)(224,264)(225,257)(226,258)(227,259)(228,260)
(229,265)(230,266)(231,267)(232,268)(233,273)(234,274)(235,275)(236,276)
(237,269)(238,270)(239,271)(240,272)(241,277)(242,278)(243,279)(244,280)
(245,285)(246,286)(247,287)(248,288)(249,281)(250,282)(251,283)(252,284);;
s2 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 11, 12)( 13, 29)( 14, 30)( 15, 32)
( 16, 31)( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 21, 33)( 22, 34)( 23, 36)
( 24, 35)( 37, 41)( 38, 42)( 39, 44)( 40, 43)( 47, 48)( 49, 65)( 50, 66)
( 51, 68)( 52, 67)( 53, 61)( 54, 62)( 55, 64)( 56, 63)( 57, 69)( 58, 70)
( 59, 72)( 60, 71)( 73, 77)( 74, 78)( 75, 80)( 76, 79)( 83, 84)( 85,101)
( 86,102)( 87,104)( 88,103)( 89, 97)( 90, 98)( 91,100)( 92, 99)( 93,105)
( 94,106)( 95,108)( 96,107)(109,113)(110,114)(111,116)(112,115)(119,120)
(121,137)(122,138)(123,140)(124,139)(125,133)(126,134)(127,136)(128,135)
(129,141)(130,142)(131,144)(132,143)(145,149)(146,150)(147,152)(148,151)
(155,156)(157,173)(158,174)(159,176)(160,175)(161,169)(162,170)(163,172)
(164,171)(165,177)(166,178)(167,180)(168,179)(181,185)(182,186)(183,188)
(184,187)(191,192)(193,209)(194,210)(195,212)(196,211)(197,205)(198,206)
(199,208)(200,207)(201,213)(202,214)(203,216)(204,215)(217,221)(218,222)
(219,224)(220,223)(227,228)(229,245)(230,246)(231,248)(232,247)(233,241)
(234,242)(235,244)(236,243)(237,249)(238,250)(239,252)(240,251)(253,257)
(254,258)(255,260)(256,259)(263,264)(265,281)(266,282)(267,284)(268,283)
(269,277)(270,278)(271,280)(272,279)(273,285)(274,286)(275,288)(276,287);;
s3 := ( 1,157)( 2,160)( 3,159)( 4,158)( 5,165)( 6,168)( 7,167)( 8,166)
( 9,161)( 10,164)( 11,163)( 12,162)( 13,145)( 14,148)( 15,147)( 16,146)
( 17,153)( 18,156)( 19,155)( 20,154)( 21,149)( 22,152)( 23,151)( 24,150)
( 25,169)( 26,172)( 27,171)( 28,170)( 29,177)( 30,180)( 31,179)( 32,178)
( 33,173)( 34,176)( 35,175)( 36,174)( 37,193)( 38,196)( 39,195)( 40,194)
( 41,201)( 42,204)( 43,203)( 44,202)( 45,197)( 46,200)( 47,199)( 48,198)
( 49,181)( 50,184)( 51,183)( 52,182)( 53,189)( 54,192)( 55,191)( 56,190)
( 57,185)( 58,188)( 59,187)( 60,186)( 61,205)( 62,208)( 63,207)( 64,206)
( 65,213)( 66,216)( 67,215)( 68,214)( 69,209)( 70,212)( 71,211)( 72,210)
( 73,229)( 74,232)( 75,231)( 76,230)( 77,237)( 78,240)( 79,239)( 80,238)
( 81,233)( 82,236)( 83,235)( 84,234)( 85,217)( 86,220)( 87,219)( 88,218)
( 89,225)( 90,228)( 91,227)( 92,226)( 93,221)( 94,224)( 95,223)( 96,222)
( 97,241)( 98,244)( 99,243)(100,242)(101,249)(102,252)(103,251)(104,250)
(105,245)(106,248)(107,247)(108,246)(109,265)(110,268)(111,267)(112,266)
(113,273)(114,276)(115,275)(116,274)(117,269)(118,272)(119,271)(120,270)
(121,253)(122,256)(123,255)(124,254)(125,261)(126,264)(127,263)(128,262)
(129,257)(130,260)(131,259)(132,258)(133,277)(134,280)(135,279)(136,278)
(137,285)(138,288)(139,287)(140,286)(141,281)(142,284)(143,283)(144,282);;
s4 := ( 1,146)( 2,145)( 3,148)( 4,147)( 5,150)( 6,149)( 7,152)( 8,151)
( 9,154)( 10,153)( 11,156)( 12,155)( 13,158)( 14,157)( 15,160)( 16,159)
( 17,162)( 18,161)( 19,164)( 20,163)( 21,166)( 22,165)( 23,168)( 24,167)
( 25,170)( 26,169)( 27,172)( 28,171)( 29,174)( 30,173)( 31,176)( 32,175)
( 33,178)( 34,177)( 35,180)( 36,179)( 37,182)( 38,181)( 39,184)( 40,183)
( 41,186)( 42,185)( 43,188)( 44,187)( 45,190)( 46,189)( 47,192)( 48,191)
( 49,194)( 50,193)( 51,196)( 52,195)( 53,198)( 54,197)( 55,200)( 56,199)
( 57,202)( 58,201)( 59,204)( 60,203)( 61,206)( 62,205)( 63,208)( 64,207)
( 65,210)( 66,209)( 67,212)( 68,211)( 69,214)( 70,213)( 71,216)( 72,215)
( 73,218)( 74,217)( 75,220)( 76,219)( 77,222)( 78,221)( 79,224)( 80,223)
( 81,226)( 82,225)( 83,228)( 84,227)( 85,230)( 86,229)( 87,232)( 88,231)
( 89,234)( 90,233)( 91,236)( 92,235)( 93,238)( 94,237)( 95,240)( 96,239)
( 97,242)( 98,241)( 99,244)(100,243)(101,246)(102,245)(103,248)(104,247)
(105,250)(106,249)(107,252)(108,251)(109,254)(110,253)(111,256)(112,255)
(113,258)(114,257)(115,260)(116,259)(117,262)(118,261)(119,264)(120,263)
(121,266)(122,265)(123,268)(124,267)(125,270)(126,269)(127,272)(128,271)
(129,274)(130,273)(131,276)(132,275)(133,278)(134,277)(135,280)(136,279)
(137,282)(138,281)(139,284)(140,283)(141,286)(142,285)(143,288)(144,287);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s4*s2*s3*s4*s2*s3*s4, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(288)!( 1, 73)( 2, 74)( 3, 75)( 4, 76)( 5, 77)( 6, 78)( 7, 79)
( 8, 80)( 9, 81)( 10, 82)( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)
( 16, 88)( 17, 89)( 18, 90)( 19, 91)( 20, 92)( 21, 93)( 22, 94)( 23, 95)
( 24, 96)( 25, 97)( 26, 98)( 27, 99)( 28,100)( 29,101)( 30,102)( 31,103)
( 32,104)( 33,105)( 34,106)( 35,107)( 36,108)( 37,109)( 38,110)( 39,111)
( 40,112)( 41,113)( 42,114)( 43,115)( 44,116)( 45,117)( 46,118)( 47,119)
( 48,120)( 49,121)( 50,122)( 51,123)( 52,124)( 53,125)( 54,126)( 55,127)
( 56,128)( 57,129)( 58,130)( 59,131)( 60,132)( 61,133)( 62,134)( 63,135)
( 64,136)( 65,137)( 66,138)( 67,139)( 68,140)( 69,141)( 70,142)( 71,143)
( 72,144)(145,217)(146,218)(147,219)(148,220)(149,221)(150,222)(151,223)
(152,224)(153,225)(154,226)(155,227)(156,228)(157,229)(158,230)(159,231)
(160,232)(161,233)(162,234)(163,235)(164,236)(165,237)(166,238)(167,239)
(168,240)(169,241)(170,242)(171,243)(172,244)(173,245)(174,246)(175,247)
(176,248)(177,249)(178,250)(179,251)(180,252)(181,253)(182,254)(183,255)
(184,256)(185,257)(186,258)(187,259)(188,260)(189,261)(190,262)(191,263)
(192,264)(193,265)(194,266)(195,267)(196,268)(197,269)(198,270)(199,271)
(200,272)(201,273)(202,274)(203,275)(204,276)(205,277)(206,278)(207,279)
(208,280)(209,281)(210,282)(211,283)(212,284)(213,285)(214,286)(215,287)
(216,288);
s1 := Sym(288)!( 5, 9)( 6, 10)( 7, 11)( 8, 12)( 17, 21)( 18, 22)( 19, 23)
( 20, 24)( 29, 33)( 30, 34)( 31, 35)( 32, 36)( 41, 45)( 42, 46)( 43, 47)
( 44, 48)( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 69)( 66, 70)( 67, 71)
( 68, 72)( 73,109)( 74,110)( 75,111)( 76,112)( 77,117)( 78,118)( 79,119)
( 80,120)( 81,113)( 82,114)( 83,115)( 84,116)( 85,121)( 86,122)( 87,123)
( 88,124)( 89,129)( 90,130)( 91,131)( 92,132)( 93,125)( 94,126)( 95,127)
( 96,128)( 97,133)( 98,134)( 99,135)(100,136)(101,141)(102,142)(103,143)
(104,144)(105,137)(106,138)(107,139)(108,140)(149,153)(150,154)(151,155)
(152,156)(161,165)(162,166)(163,167)(164,168)(173,177)(174,178)(175,179)
(176,180)(185,189)(186,190)(187,191)(188,192)(197,201)(198,202)(199,203)
(200,204)(209,213)(210,214)(211,215)(212,216)(217,253)(218,254)(219,255)
(220,256)(221,261)(222,262)(223,263)(224,264)(225,257)(226,258)(227,259)
(228,260)(229,265)(230,266)(231,267)(232,268)(233,273)(234,274)(235,275)
(236,276)(237,269)(238,270)(239,271)(240,272)(241,277)(242,278)(243,279)
(244,280)(245,285)(246,286)(247,287)(248,288)(249,281)(250,282)(251,283)
(252,284);
s2 := Sym(288)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 11, 12)( 13, 29)( 14, 30)
( 15, 32)( 16, 31)( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 21, 33)( 22, 34)
( 23, 36)( 24, 35)( 37, 41)( 38, 42)( 39, 44)( 40, 43)( 47, 48)( 49, 65)
( 50, 66)( 51, 68)( 52, 67)( 53, 61)( 54, 62)( 55, 64)( 56, 63)( 57, 69)
( 58, 70)( 59, 72)( 60, 71)( 73, 77)( 74, 78)( 75, 80)( 76, 79)( 83, 84)
( 85,101)( 86,102)( 87,104)( 88,103)( 89, 97)( 90, 98)( 91,100)( 92, 99)
( 93,105)( 94,106)( 95,108)( 96,107)(109,113)(110,114)(111,116)(112,115)
(119,120)(121,137)(122,138)(123,140)(124,139)(125,133)(126,134)(127,136)
(128,135)(129,141)(130,142)(131,144)(132,143)(145,149)(146,150)(147,152)
(148,151)(155,156)(157,173)(158,174)(159,176)(160,175)(161,169)(162,170)
(163,172)(164,171)(165,177)(166,178)(167,180)(168,179)(181,185)(182,186)
(183,188)(184,187)(191,192)(193,209)(194,210)(195,212)(196,211)(197,205)
(198,206)(199,208)(200,207)(201,213)(202,214)(203,216)(204,215)(217,221)
(218,222)(219,224)(220,223)(227,228)(229,245)(230,246)(231,248)(232,247)
(233,241)(234,242)(235,244)(236,243)(237,249)(238,250)(239,252)(240,251)
(253,257)(254,258)(255,260)(256,259)(263,264)(265,281)(266,282)(267,284)
(268,283)(269,277)(270,278)(271,280)(272,279)(273,285)(274,286)(275,288)
(276,287);
s3 := Sym(288)!( 1,157)( 2,160)( 3,159)( 4,158)( 5,165)( 6,168)( 7,167)
( 8,166)( 9,161)( 10,164)( 11,163)( 12,162)( 13,145)( 14,148)( 15,147)
( 16,146)( 17,153)( 18,156)( 19,155)( 20,154)( 21,149)( 22,152)( 23,151)
( 24,150)( 25,169)( 26,172)( 27,171)( 28,170)( 29,177)( 30,180)( 31,179)
( 32,178)( 33,173)( 34,176)( 35,175)( 36,174)( 37,193)( 38,196)( 39,195)
( 40,194)( 41,201)( 42,204)( 43,203)( 44,202)( 45,197)( 46,200)( 47,199)
( 48,198)( 49,181)( 50,184)( 51,183)( 52,182)( 53,189)( 54,192)( 55,191)
( 56,190)( 57,185)( 58,188)( 59,187)( 60,186)( 61,205)( 62,208)( 63,207)
( 64,206)( 65,213)( 66,216)( 67,215)( 68,214)( 69,209)( 70,212)( 71,211)
( 72,210)( 73,229)( 74,232)( 75,231)( 76,230)( 77,237)( 78,240)( 79,239)
( 80,238)( 81,233)( 82,236)( 83,235)( 84,234)( 85,217)( 86,220)( 87,219)
( 88,218)( 89,225)( 90,228)( 91,227)( 92,226)( 93,221)( 94,224)( 95,223)
( 96,222)( 97,241)( 98,244)( 99,243)(100,242)(101,249)(102,252)(103,251)
(104,250)(105,245)(106,248)(107,247)(108,246)(109,265)(110,268)(111,267)
(112,266)(113,273)(114,276)(115,275)(116,274)(117,269)(118,272)(119,271)
(120,270)(121,253)(122,256)(123,255)(124,254)(125,261)(126,264)(127,263)
(128,262)(129,257)(130,260)(131,259)(132,258)(133,277)(134,280)(135,279)
(136,278)(137,285)(138,288)(139,287)(140,286)(141,281)(142,284)(143,283)
(144,282);
s4 := Sym(288)!( 1,146)( 2,145)( 3,148)( 4,147)( 5,150)( 6,149)( 7,152)
( 8,151)( 9,154)( 10,153)( 11,156)( 12,155)( 13,158)( 14,157)( 15,160)
( 16,159)( 17,162)( 18,161)( 19,164)( 20,163)( 21,166)( 22,165)( 23,168)
( 24,167)( 25,170)( 26,169)( 27,172)( 28,171)( 29,174)( 30,173)( 31,176)
( 32,175)( 33,178)( 34,177)( 35,180)( 36,179)( 37,182)( 38,181)( 39,184)
( 40,183)( 41,186)( 42,185)( 43,188)( 44,187)( 45,190)( 46,189)( 47,192)
( 48,191)( 49,194)( 50,193)( 51,196)( 52,195)( 53,198)( 54,197)( 55,200)
( 56,199)( 57,202)( 58,201)( 59,204)( 60,203)( 61,206)( 62,205)( 63,208)
( 64,207)( 65,210)( 66,209)( 67,212)( 68,211)( 69,214)( 70,213)( 71,216)
( 72,215)( 73,218)( 74,217)( 75,220)( 76,219)( 77,222)( 78,221)( 79,224)
( 80,223)( 81,226)( 82,225)( 83,228)( 84,227)( 85,230)( 86,229)( 87,232)
( 88,231)( 89,234)( 90,233)( 91,236)( 92,235)( 93,238)( 94,237)( 95,240)
( 96,239)( 97,242)( 98,241)( 99,244)(100,243)(101,246)(102,245)(103,248)
(104,247)(105,250)(106,249)(107,252)(108,251)(109,254)(110,253)(111,256)
(112,255)(113,258)(114,257)(115,260)(116,259)(117,262)(118,261)(119,264)
(120,263)(121,266)(122,265)(123,268)(124,267)(125,270)(126,269)(127,272)
(128,271)(129,274)(130,273)(131,276)(132,275)(133,278)(134,277)(135,280)
(136,279)(137,282)(138,281)(139,284)(140,283)(141,286)(142,285)(143,288)
(144,287);
poly := sub<Sym(288)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s4*s2*s3*s4*s2*s3*s4, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 >;
References : None.
to this polytope