Polytope of Type {2,4,12,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,12,3}*1152
if this polytope has a name.
Group : SmallGroup(1152,157640)
Rank : 5
Schlafli Type : {2,4,12,3}
Number of vertices, edges, etc : 2, 4, 48, 36, 6
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,12,3}*576
   3-fold quotients : {2,4,4,3}*384b
   4-fold quotients : {2,4,6,3}*288
   6-fold quotients : {2,2,4,3}*192
   8-fold quotients : {2,2,6,3}*144
   12-fold quotients : {2,4,2,3}*96, {2,2,4,3}*96
   24-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3, 75)(  4, 76)(  5, 77)(  6, 78)(  7, 79)(  8, 80)(  9, 81)( 10, 82)
( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)( 16, 88)( 17, 89)( 18, 90)
( 19, 91)( 20, 92)( 21, 93)( 22, 94)( 23, 95)( 24, 96)( 25, 97)( 26, 98)
( 27, 99)( 28,100)( 29,101)( 30,102)( 31,103)( 32,104)( 33,105)( 34,106)
( 35,107)( 36,108)( 37,109)( 38,110)( 39,111)( 40,112)( 41,113)( 42,114)
( 43,115)( 44,116)( 45,117)( 46,118)( 47,119)( 48,120)( 49,121)( 50,122)
( 51,123)( 52,124)( 53,125)( 54,126)( 55,127)( 56,128)( 57,129)( 58,130)
( 59,131)( 60,132)( 61,133)( 62,134)( 63,135)( 64,136)( 65,137)( 66,138)
( 67,139)( 68,140)( 69,141)( 70,142)( 71,143)( 72,144)( 73,145)( 74,146);;
s2 := (  3,  5)(  4,  6)(  7, 13)(  8, 14)(  9, 11)( 10, 12)( 15, 17)( 16, 18)
( 19, 25)( 20, 26)( 21, 23)( 22, 24)( 27, 29)( 28, 30)( 31, 37)( 32, 38)
( 33, 35)( 34, 36)( 39, 41)( 40, 42)( 43, 49)( 44, 50)( 45, 47)( 46, 48)
( 51, 53)( 52, 54)( 55, 61)( 56, 62)( 57, 59)( 58, 60)( 63, 65)( 64, 66)
( 67, 73)( 68, 74)( 69, 71)( 70, 72)( 75,113)( 76,114)( 77,111)( 78,112)
( 79,121)( 80,122)( 81,119)( 82,120)( 83,117)( 84,118)( 85,115)( 86,116)
( 87,125)( 88,126)( 89,123)( 90,124)( 91,133)( 92,134)( 93,131)( 94,132)
( 95,129)( 96,130)( 97,127)( 98,128)( 99,137)(100,138)(101,135)(102,136)
(103,145)(104,146)(105,143)(106,144)(107,141)(108,142)(109,139)(110,140);;
s3 := (  3,  7)(  4,  9)(  5,  8)(  6, 10)( 12, 13)( 15, 31)( 16, 33)( 17, 32)
( 18, 34)( 19, 27)( 20, 29)( 21, 28)( 22, 30)( 23, 35)( 24, 37)( 25, 36)
( 26, 38)( 39, 43)( 40, 45)( 41, 44)( 42, 46)( 48, 49)( 51, 67)( 52, 69)
( 53, 68)( 54, 70)( 55, 63)( 56, 65)( 57, 64)( 58, 66)( 59, 71)( 60, 73)
( 61, 72)( 62, 74)( 75, 79)( 76, 81)( 77, 80)( 78, 82)( 84, 85)( 87,103)
( 88,105)( 89,104)( 90,106)( 91, 99)( 92,101)( 93,100)( 94,102)( 95,107)
( 96,109)( 97,108)( 98,110)(111,115)(112,117)(113,116)(114,118)(120,121)
(123,139)(124,141)(125,140)(126,142)(127,135)(128,137)(129,136)(130,138)
(131,143)(132,145)(133,144)(134,146);;
s4 := (  3, 27)(  4, 30)(  5, 29)(  6, 28)(  7, 35)(  8, 38)(  9, 37)( 10, 36)
( 11, 31)( 12, 34)( 13, 33)( 14, 32)( 16, 18)( 19, 23)( 20, 26)( 21, 25)
( 22, 24)( 39, 63)( 40, 66)( 41, 65)( 42, 64)( 43, 71)( 44, 74)( 45, 73)
( 46, 72)( 47, 67)( 48, 70)( 49, 69)( 50, 68)( 52, 54)( 55, 59)( 56, 62)
( 57, 61)( 58, 60)( 75, 99)( 76,102)( 77,101)( 78,100)( 79,107)( 80,110)
( 81,109)( 82,108)( 83,103)( 84,106)( 85,105)( 86,104)( 88, 90)( 91, 95)
( 92, 98)( 93, 97)( 94, 96)(111,135)(112,138)(113,137)(114,136)(115,143)
(116,146)(117,145)(118,144)(119,139)(120,142)(121,141)(122,140)(124,126)
(127,131)(128,134)(129,133)(130,132);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s4*s2*s3*s2*s3*s2*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(146)!(1,2);
s1 := Sym(146)!(  3, 75)(  4, 76)(  5, 77)(  6, 78)(  7, 79)(  8, 80)(  9, 81)
( 10, 82)( 11, 83)( 12, 84)( 13, 85)( 14, 86)( 15, 87)( 16, 88)( 17, 89)
( 18, 90)( 19, 91)( 20, 92)( 21, 93)( 22, 94)( 23, 95)( 24, 96)( 25, 97)
( 26, 98)( 27, 99)( 28,100)( 29,101)( 30,102)( 31,103)( 32,104)( 33,105)
( 34,106)( 35,107)( 36,108)( 37,109)( 38,110)( 39,111)( 40,112)( 41,113)
( 42,114)( 43,115)( 44,116)( 45,117)( 46,118)( 47,119)( 48,120)( 49,121)
( 50,122)( 51,123)( 52,124)( 53,125)( 54,126)( 55,127)( 56,128)( 57,129)
( 58,130)( 59,131)( 60,132)( 61,133)( 62,134)( 63,135)( 64,136)( 65,137)
( 66,138)( 67,139)( 68,140)( 69,141)( 70,142)( 71,143)( 72,144)( 73,145)
( 74,146);
s2 := Sym(146)!(  3,  5)(  4,  6)(  7, 13)(  8, 14)(  9, 11)( 10, 12)( 15, 17)
( 16, 18)( 19, 25)( 20, 26)( 21, 23)( 22, 24)( 27, 29)( 28, 30)( 31, 37)
( 32, 38)( 33, 35)( 34, 36)( 39, 41)( 40, 42)( 43, 49)( 44, 50)( 45, 47)
( 46, 48)( 51, 53)( 52, 54)( 55, 61)( 56, 62)( 57, 59)( 58, 60)( 63, 65)
( 64, 66)( 67, 73)( 68, 74)( 69, 71)( 70, 72)( 75,113)( 76,114)( 77,111)
( 78,112)( 79,121)( 80,122)( 81,119)( 82,120)( 83,117)( 84,118)( 85,115)
( 86,116)( 87,125)( 88,126)( 89,123)( 90,124)( 91,133)( 92,134)( 93,131)
( 94,132)( 95,129)( 96,130)( 97,127)( 98,128)( 99,137)(100,138)(101,135)
(102,136)(103,145)(104,146)(105,143)(106,144)(107,141)(108,142)(109,139)
(110,140);
s3 := Sym(146)!(  3,  7)(  4,  9)(  5,  8)(  6, 10)( 12, 13)( 15, 31)( 16, 33)
( 17, 32)( 18, 34)( 19, 27)( 20, 29)( 21, 28)( 22, 30)( 23, 35)( 24, 37)
( 25, 36)( 26, 38)( 39, 43)( 40, 45)( 41, 44)( 42, 46)( 48, 49)( 51, 67)
( 52, 69)( 53, 68)( 54, 70)( 55, 63)( 56, 65)( 57, 64)( 58, 66)( 59, 71)
( 60, 73)( 61, 72)( 62, 74)( 75, 79)( 76, 81)( 77, 80)( 78, 82)( 84, 85)
( 87,103)( 88,105)( 89,104)( 90,106)( 91, 99)( 92,101)( 93,100)( 94,102)
( 95,107)( 96,109)( 97,108)( 98,110)(111,115)(112,117)(113,116)(114,118)
(120,121)(123,139)(124,141)(125,140)(126,142)(127,135)(128,137)(129,136)
(130,138)(131,143)(132,145)(133,144)(134,146);
s4 := Sym(146)!(  3, 27)(  4, 30)(  5, 29)(  6, 28)(  7, 35)(  8, 38)(  9, 37)
( 10, 36)( 11, 31)( 12, 34)( 13, 33)( 14, 32)( 16, 18)( 19, 23)( 20, 26)
( 21, 25)( 22, 24)( 39, 63)( 40, 66)( 41, 65)( 42, 64)( 43, 71)( 44, 74)
( 45, 73)( 46, 72)( 47, 67)( 48, 70)( 49, 69)( 50, 68)( 52, 54)( 55, 59)
( 56, 62)( 57, 61)( 58, 60)( 75, 99)( 76,102)( 77,101)( 78,100)( 79,107)
( 80,110)( 81,109)( 82,108)( 83,103)( 84,106)( 85,105)( 86,104)( 88, 90)
( 91, 95)( 92, 98)( 93, 97)( 94, 96)(111,135)(112,138)(113,137)(114,136)
(115,143)(116,146)(117,145)(118,144)(119,139)(120,142)(121,141)(122,140)
(124,126)(127,131)(128,134)(129,133)(130,132);
poly := sub<Sym(146)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s4*s2*s3*s2*s3*s2*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3 >; 
 

to this polytope