include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,12,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,6}*1152e
if this polytope has a name.
Group : SmallGroup(1152,157851)
Rank : 4
Schlafli Type : {6,12,6}
Number of vertices, edges, etc : 6, 48, 48, 8
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
12-fold quotients : {6,4,2}*96b
24-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)( 31, 32)
( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 49, 97)( 50, 98)( 51,100)( 52, 99)
( 53,101)( 54,102)( 55,104)( 56,103)( 57,105)( 58,106)( 59,108)( 60,107)
( 61,109)( 62,110)( 63,112)( 64,111)( 65,113)( 66,114)( 67,116)( 68,115)
( 69,117)( 70,118)( 71,120)( 72,119)( 73,121)( 74,122)( 75,124)( 76,123)
( 77,125)( 78,126)( 79,128)( 80,127)( 81,129)( 82,130)( 83,132)( 84,131)
( 85,133)( 86,134)( 87,136)( 88,135)( 89,137)( 90,138)( 91,140)( 92,139)
( 93,141)( 94,142)( 95,144)( 96,143)(147,148)(151,152)(155,156)(159,160)
(163,164)(167,168)(171,172)(175,176)(179,180)(183,184)(187,188)(191,192)
(193,241)(194,242)(195,244)(196,243)(197,245)(198,246)(199,248)(200,247)
(201,249)(202,250)(203,252)(204,251)(205,253)(206,254)(207,256)(208,255)
(209,257)(210,258)(211,260)(212,259)(213,261)(214,262)(215,264)(216,263)
(217,265)(218,266)(219,268)(220,267)(221,269)(222,270)(223,272)(224,271)
(225,273)(226,274)(227,276)(228,275)(229,277)(230,278)(231,280)(232,279)
(233,281)(234,282)(235,284)(236,283)(237,285)(238,286)(239,288)(240,287);;
s1 := ( 1, 49)( 2, 52)( 3, 51)( 4, 50)( 5, 53)( 6, 56)( 7, 55)( 8, 54)
( 9, 61)( 10, 64)( 11, 63)( 12, 62)( 13, 57)( 14, 60)( 15, 59)( 16, 58)
( 17, 81)( 18, 84)( 19, 83)( 20, 82)( 21, 85)( 22, 88)( 23, 87)( 24, 86)
( 25, 93)( 26, 96)( 27, 95)( 28, 94)( 29, 89)( 30, 92)( 31, 91)( 32, 90)
( 33, 65)( 34, 68)( 35, 67)( 36, 66)( 37, 69)( 38, 72)( 39, 71)( 40, 70)
( 41, 77)( 42, 80)( 43, 79)( 44, 78)( 45, 73)( 46, 76)( 47, 75)( 48, 74)
( 98,100)(102,104)(105,109)(106,112)(107,111)(108,110)(113,129)(114,132)
(115,131)(116,130)(117,133)(118,136)(119,135)(120,134)(121,141)(122,144)
(123,143)(124,142)(125,137)(126,140)(127,139)(128,138)(145,193)(146,196)
(147,195)(148,194)(149,197)(150,200)(151,199)(152,198)(153,205)(154,208)
(155,207)(156,206)(157,201)(158,204)(159,203)(160,202)(161,225)(162,228)
(163,227)(164,226)(165,229)(166,232)(167,231)(168,230)(169,237)(170,240)
(171,239)(172,238)(173,233)(174,236)(175,235)(176,234)(177,209)(178,212)
(179,211)(180,210)(181,213)(182,216)(183,215)(184,214)(185,221)(186,224)
(187,223)(188,222)(189,217)(190,220)(191,219)(192,218)(242,244)(246,248)
(249,253)(250,256)(251,255)(252,254)(257,273)(258,276)(259,275)(260,274)
(261,277)(262,280)(263,279)(264,278)(265,285)(266,288)(267,287)(268,286)
(269,281)(270,284)(271,283)(272,282);;
s2 := ( 1, 18)( 2, 17)( 3, 20)( 4, 19)( 5, 30)( 6, 29)( 7, 32)( 8, 31)
( 9, 26)( 10, 25)( 11, 28)( 12, 27)( 13, 22)( 14, 21)( 15, 24)( 16, 23)
( 33, 34)( 35, 36)( 37, 46)( 38, 45)( 39, 48)( 40, 47)( 41, 42)( 43, 44)
( 49, 66)( 50, 65)( 51, 68)( 52, 67)( 53, 78)( 54, 77)( 55, 80)( 56, 79)
( 57, 74)( 58, 73)( 59, 76)( 60, 75)( 61, 70)( 62, 69)( 63, 72)( 64, 71)
( 81, 82)( 83, 84)( 85, 94)( 86, 93)( 87, 96)( 88, 95)( 89, 90)( 91, 92)
( 97,114)( 98,113)( 99,116)(100,115)(101,126)(102,125)(103,128)(104,127)
(105,122)(106,121)(107,124)(108,123)(109,118)(110,117)(111,120)(112,119)
(129,130)(131,132)(133,142)(134,141)(135,144)(136,143)(137,138)(139,140)
(145,162)(146,161)(147,164)(148,163)(149,174)(150,173)(151,176)(152,175)
(153,170)(154,169)(155,172)(156,171)(157,166)(158,165)(159,168)(160,167)
(177,178)(179,180)(181,190)(182,189)(183,192)(184,191)(185,186)(187,188)
(193,210)(194,209)(195,212)(196,211)(197,222)(198,221)(199,224)(200,223)
(201,218)(202,217)(203,220)(204,219)(205,214)(206,213)(207,216)(208,215)
(225,226)(227,228)(229,238)(230,237)(231,240)(232,239)(233,234)(235,236)
(241,258)(242,257)(243,260)(244,259)(245,270)(246,269)(247,272)(248,271)
(249,266)(250,265)(251,268)(252,267)(253,262)(254,261)(255,264)(256,263)
(273,274)(275,276)(277,286)(278,285)(279,288)(280,287)(281,282)(283,284);;
s3 := ( 1,149)( 2,150)( 3,151)( 4,152)( 5,145)( 6,146)( 7,147)( 8,148)
( 9,153)( 10,154)( 11,155)( 12,156)( 13,157)( 14,158)( 15,159)( 16,160)
( 17,181)( 18,182)( 19,183)( 20,184)( 21,177)( 22,178)( 23,179)( 24,180)
( 25,185)( 26,186)( 27,187)( 28,188)( 29,189)( 30,190)( 31,191)( 32,192)
( 33,165)( 34,166)( 35,167)( 36,168)( 37,161)( 38,162)( 39,163)( 40,164)
( 41,169)( 42,170)( 43,171)( 44,172)( 45,173)( 46,174)( 47,175)( 48,176)
( 49,197)( 50,198)( 51,199)( 52,200)( 53,193)( 54,194)( 55,195)( 56,196)
( 57,201)( 58,202)( 59,203)( 60,204)( 61,205)( 62,206)( 63,207)( 64,208)
( 65,229)( 66,230)( 67,231)( 68,232)( 69,225)( 70,226)( 71,227)( 72,228)
( 73,233)( 74,234)( 75,235)( 76,236)( 77,237)( 78,238)( 79,239)( 80,240)
( 81,213)( 82,214)( 83,215)( 84,216)( 85,209)( 86,210)( 87,211)( 88,212)
( 89,217)( 90,218)( 91,219)( 92,220)( 93,221)( 94,222)( 95,223)( 96,224)
( 97,245)( 98,246)( 99,247)(100,248)(101,241)(102,242)(103,243)(104,244)
(105,249)(106,250)(107,251)(108,252)(109,253)(110,254)(111,255)(112,256)
(113,277)(114,278)(115,279)(116,280)(117,273)(118,274)(119,275)(120,276)
(121,281)(122,282)(123,283)(124,284)(125,285)(126,286)(127,287)(128,288)
(129,261)(130,262)(131,263)(132,264)(133,257)(134,258)(135,259)(136,260)
(137,265)(138,266)(139,267)(140,268)(141,269)(142,270)(143,271)(144,272);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(288)!( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)
( 31, 32)( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 49, 97)( 50, 98)( 51,100)
( 52, 99)( 53,101)( 54,102)( 55,104)( 56,103)( 57,105)( 58,106)( 59,108)
( 60,107)( 61,109)( 62,110)( 63,112)( 64,111)( 65,113)( 66,114)( 67,116)
( 68,115)( 69,117)( 70,118)( 71,120)( 72,119)( 73,121)( 74,122)( 75,124)
( 76,123)( 77,125)( 78,126)( 79,128)( 80,127)( 81,129)( 82,130)( 83,132)
( 84,131)( 85,133)( 86,134)( 87,136)( 88,135)( 89,137)( 90,138)( 91,140)
( 92,139)( 93,141)( 94,142)( 95,144)( 96,143)(147,148)(151,152)(155,156)
(159,160)(163,164)(167,168)(171,172)(175,176)(179,180)(183,184)(187,188)
(191,192)(193,241)(194,242)(195,244)(196,243)(197,245)(198,246)(199,248)
(200,247)(201,249)(202,250)(203,252)(204,251)(205,253)(206,254)(207,256)
(208,255)(209,257)(210,258)(211,260)(212,259)(213,261)(214,262)(215,264)
(216,263)(217,265)(218,266)(219,268)(220,267)(221,269)(222,270)(223,272)
(224,271)(225,273)(226,274)(227,276)(228,275)(229,277)(230,278)(231,280)
(232,279)(233,281)(234,282)(235,284)(236,283)(237,285)(238,286)(239,288)
(240,287);
s1 := Sym(288)!( 1, 49)( 2, 52)( 3, 51)( 4, 50)( 5, 53)( 6, 56)( 7, 55)
( 8, 54)( 9, 61)( 10, 64)( 11, 63)( 12, 62)( 13, 57)( 14, 60)( 15, 59)
( 16, 58)( 17, 81)( 18, 84)( 19, 83)( 20, 82)( 21, 85)( 22, 88)( 23, 87)
( 24, 86)( 25, 93)( 26, 96)( 27, 95)( 28, 94)( 29, 89)( 30, 92)( 31, 91)
( 32, 90)( 33, 65)( 34, 68)( 35, 67)( 36, 66)( 37, 69)( 38, 72)( 39, 71)
( 40, 70)( 41, 77)( 42, 80)( 43, 79)( 44, 78)( 45, 73)( 46, 76)( 47, 75)
( 48, 74)( 98,100)(102,104)(105,109)(106,112)(107,111)(108,110)(113,129)
(114,132)(115,131)(116,130)(117,133)(118,136)(119,135)(120,134)(121,141)
(122,144)(123,143)(124,142)(125,137)(126,140)(127,139)(128,138)(145,193)
(146,196)(147,195)(148,194)(149,197)(150,200)(151,199)(152,198)(153,205)
(154,208)(155,207)(156,206)(157,201)(158,204)(159,203)(160,202)(161,225)
(162,228)(163,227)(164,226)(165,229)(166,232)(167,231)(168,230)(169,237)
(170,240)(171,239)(172,238)(173,233)(174,236)(175,235)(176,234)(177,209)
(178,212)(179,211)(180,210)(181,213)(182,216)(183,215)(184,214)(185,221)
(186,224)(187,223)(188,222)(189,217)(190,220)(191,219)(192,218)(242,244)
(246,248)(249,253)(250,256)(251,255)(252,254)(257,273)(258,276)(259,275)
(260,274)(261,277)(262,280)(263,279)(264,278)(265,285)(266,288)(267,287)
(268,286)(269,281)(270,284)(271,283)(272,282);
s2 := Sym(288)!( 1, 18)( 2, 17)( 3, 20)( 4, 19)( 5, 30)( 6, 29)( 7, 32)
( 8, 31)( 9, 26)( 10, 25)( 11, 28)( 12, 27)( 13, 22)( 14, 21)( 15, 24)
( 16, 23)( 33, 34)( 35, 36)( 37, 46)( 38, 45)( 39, 48)( 40, 47)( 41, 42)
( 43, 44)( 49, 66)( 50, 65)( 51, 68)( 52, 67)( 53, 78)( 54, 77)( 55, 80)
( 56, 79)( 57, 74)( 58, 73)( 59, 76)( 60, 75)( 61, 70)( 62, 69)( 63, 72)
( 64, 71)( 81, 82)( 83, 84)( 85, 94)( 86, 93)( 87, 96)( 88, 95)( 89, 90)
( 91, 92)( 97,114)( 98,113)( 99,116)(100,115)(101,126)(102,125)(103,128)
(104,127)(105,122)(106,121)(107,124)(108,123)(109,118)(110,117)(111,120)
(112,119)(129,130)(131,132)(133,142)(134,141)(135,144)(136,143)(137,138)
(139,140)(145,162)(146,161)(147,164)(148,163)(149,174)(150,173)(151,176)
(152,175)(153,170)(154,169)(155,172)(156,171)(157,166)(158,165)(159,168)
(160,167)(177,178)(179,180)(181,190)(182,189)(183,192)(184,191)(185,186)
(187,188)(193,210)(194,209)(195,212)(196,211)(197,222)(198,221)(199,224)
(200,223)(201,218)(202,217)(203,220)(204,219)(205,214)(206,213)(207,216)
(208,215)(225,226)(227,228)(229,238)(230,237)(231,240)(232,239)(233,234)
(235,236)(241,258)(242,257)(243,260)(244,259)(245,270)(246,269)(247,272)
(248,271)(249,266)(250,265)(251,268)(252,267)(253,262)(254,261)(255,264)
(256,263)(273,274)(275,276)(277,286)(278,285)(279,288)(280,287)(281,282)
(283,284);
s3 := Sym(288)!( 1,149)( 2,150)( 3,151)( 4,152)( 5,145)( 6,146)( 7,147)
( 8,148)( 9,153)( 10,154)( 11,155)( 12,156)( 13,157)( 14,158)( 15,159)
( 16,160)( 17,181)( 18,182)( 19,183)( 20,184)( 21,177)( 22,178)( 23,179)
( 24,180)( 25,185)( 26,186)( 27,187)( 28,188)( 29,189)( 30,190)( 31,191)
( 32,192)( 33,165)( 34,166)( 35,167)( 36,168)( 37,161)( 38,162)( 39,163)
( 40,164)( 41,169)( 42,170)( 43,171)( 44,172)( 45,173)( 46,174)( 47,175)
( 48,176)( 49,197)( 50,198)( 51,199)( 52,200)( 53,193)( 54,194)( 55,195)
( 56,196)( 57,201)( 58,202)( 59,203)( 60,204)( 61,205)( 62,206)( 63,207)
( 64,208)( 65,229)( 66,230)( 67,231)( 68,232)( 69,225)( 70,226)( 71,227)
( 72,228)( 73,233)( 74,234)( 75,235)( 76,236)( 77,237)( 78,238)( 79,239)
( 80,240)( 81,213)( 82,214)( 83,215)( 84,216)( 85,209)( 86,210)( 87,211)
( 88,212)( 89,217)( 90,218)( 91,219)( 92,220)( 93,221)( 94,222)( 95,223)
( 96,224)( 97,245)( 98,246)( 99,247)(100,248)(101,241)(102,242)(103,243)
(104,244)(105,249)(106,250)(107,251)(108,252)(109,253)(110,254)(111,255)
(112,256)(113,277)(114,278)(115,279)(116,280)(117,273)(118,274)(119,275)
(120,276)(121,281)(122,282)(123,283)(124,284)(125,285)(126,286)(127,287)
(128,288)(129,261)(130,262)(131,263)(132,264)(133,257)(134,258)(135,259)
(136,260)(137,265)(138,266)(139,267)(140,268)(141,269)(142,270)(143,271)
(144,272);
poly := sub<Sym(288)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s0*s1*s2*s0*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1 >;
References : None.
to this polytope