Polytope of Type {2,12,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,3}*1152
if this polytope has a name.
Group : SmallGroup(1152,157851)
Rank : 4
Schlafli Type : {2,12,3}
Number of vertices, edges, etc : 2, 96, 144, 24
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {2,6,3}*288, {2,12,3}*288
   12-fold quotients : {2,4,3}*96, {2,6,3}*96
   16-fold quotients : {2,6,3}*72
   24-fold quotients : {2,3,3}*48, {2,4,3}*48
   48-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,11)( 4,13)( 5,12)( 6,14)( 7,15)( 8,17)( 9,16)(10,18);;
s2 := ( 4, 6)( 7,11)( 8,14)( 9,13)(10,12)(16,18);;
s3 := ( 3, 6)( 7,18)( 8,16)( 9,17)(10,15)(11,14);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(18)!(1,2);
s1 := Sym(18)!( 3,11)( 4,13)( 5,12)( 6,14)( 7,15)( 8,17)( 9,16)(10,18);
s2 := Sym(18)!( 4, 6)( 7,11)( 8,14)( 9,13)(10,12)(16,18);
s3 := Sym(18)!( 3, 6)( 7,18)( 8,16)( 9,17)(10,15)(11,14);
poly := sub<Sym(18)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope