include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,4}*1152i
if this polytope has a name.
Group : SmallGroup(1152,157852)
Rank : 4
Schlafli Type : {6,6,4}
Number of vertices, edges, etc : 6, 72, 48, 16
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 4
Special Properties :
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,4}*576b
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)( 26, 46)
( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49, 97)( 50, 98)
( 51,100)( 52, 99)( 53,101)( 54,102)( 55,104)( 56,103)( 57,109)( 58,110)
( 59,112)( 60,111)( 61,105)( 62,106)( 63,108)( 64,107)( 65,129)( 66,130)
( 67,132)( 68,131)( 69,133)( 70,134)( 71,136)( 72,135)( 73,141)( 74,142)
( 75,144)( 76,143)( 77,137)( 78,138)( 79,140)( 80,139)( 81,113)( 82,114)
( 83,116)( 84,115)( 85,117)( 86,118)( 87,120)( 88,119)( 89,125)( 90,126)
( 91,128)( 92,127)( 93,121)( 94,122)( 95,124)( 96,123)(147,148)(151,152)
(153,157)(154,158)(155,160)(156,159)(161,177)(162,178)(163,180)(164,179)
(165,181)(166,182)(167,184)(168,183)(169,189)(170,190)(171,192)(172,191)
(173,185)(174,186)(175,188)(176,187)(193,241)(194,242)(195,244)(196,243)
(197,245)(198,246)(199,248)(200,247)(201,253)(202,254)(203,256)(204,255)
(205,249)(206,250)(207,252)(208,251)(209,273)(210,274)(211,276)(212,275)
(213,277)(214,278)(215,280)(216,279)(217,285)(218,286)(219,288)(220,287)
(221,281)(222,282)(223,284)(224,283)(225,257)(226,258)(227,260)(228,259)
(229,261)(230,262)(231,264)(232,263)(233,269)(234,270)(235,272)(236,271)
(237,265)(238,266)(239,268)(240,267);;
s1 := ( 1,193)( 2,194)( 3,196)( 4,195)( 5,205)( 6,206)( 7,208)( 8,207)
( 9,201)( 10,202)( 11,204)( 12,203)( 13,197)( 14,198)( 15,200)( 16,199)
( 17,225)( 18,226)( 19,228)( 20,227)( 21,237)( 22,238)( 23,240)( 24,239)
( 25,233)( 26,234)( 27,236)( 28,235)( 29,229)( 30,230)( 31,232)( 32,231)
( 33,209)( 34,210)( 35,212)( 36,211)( 37,221)( 38,222)( 39,224)( 40,223)
( 41,217)( 42,218)( 43,220)( 44,219)( 45,213)( 46,214)( 47,216)( 48,215)
( 49,145)( 50,146)( 51,148)( 52,147)( 53,157)( 54,158)( 55,160)( 56,159)
( 57,153)( 58,154)( 59,156)( 60,155)( 61,149)( 62,150)( 63,152)( 64,151)
( 65,177)( 66,178)( 67,180)( 68,179)( 69,189)( 70,190)( 71,192)( 72,191)
( 73,185)( 74,186)( 75,188)( 76,187)( 77,181)( 78,182)( 79,184)( 80,183)
( 81,161)( 82,162)( 83,164)( 84,163)( 85,173)( 86,174)( 87,176)( 88,175)
( 89,169)( 90,170)( 91,172)( 92,171)( 93,165)( 94,166)( 95,168)( 96,167)
( 97,241)( 98,242)( 99,244)(100,243)(101,253)(102,254)(103,256)(104,255)
(105,249)(106,250)(107,252)(108,251)(109,245)(110,246)(111,248)(112,247)
(113,273)(114,274)(115,276)(116,275)(117,285)(118,286)(119,288)(120,287)
(121,281)(122,282)(123,284)(124,283)(125,277)(126,278)(127,280)(128,279)
(129,257)(130,258)(131,260)(132,259)(133,269)(134,270)(135,272)(136,271)
(137,265)(138,266)(139,268)(140,267)(141,261)(142,262)(143,264)(144,263);;
s2 := ( 2, 5)( 3, 9)( 4, 13)( 7, 10)( 8, 14)( 12, 15)( 17, 33)( 18, 37)
( 19, 41)( 20, 45)( 21, 34)( 22, 38)( 23, 42)( 24, 46)( 25, 35)( 26, 39)
( 27, 43)( 28, 47)( 29, 36)( 30, 40)( 31, 44)( 32, 48)( 49, 65)( 50, 69)
( 51, 73)( 52, 77)( 53, 66)( 54, 70)( 55, 74)( 56, 78)( 57, 67)( 58, 71)
( 59, 75)( 60, 79)( 61, 68)( 62, 72)( 63, 76)( 64, 80)( 82, 85)( 83, 89)
( 84, 93)( 87, 90)( 88, 94)( 92, 95)( 97,129)( 98,133)( 99,137)(100,141)
(101,130)(102,134)(103,138)(104,142)(105,131)(106,135)(107,139)(108,143)
(109,132)(110,136)(111,140)(112,144)(114,117)(115,121)(116,125)(119,122)
(120,126)(124,127)(146,149)(147,153)(148,157)(151,154)(152,158)(156,159)
(161,177)(162,181)(163,185)(164,189)(165,178)(166,182)(167,186)(168,190)
(169,179)(170,183)(171,187)(172,191)(173,180)(174,184)(175,188)(176,192)
(193,209)(194,213)(195,217)(196,221)(197,210)(198,214)(199,218)(200,222)
(201,211)(202,215)(203,219)(204,223)(205,212)(206,216)(207,220)(208,224)
(226,229)(227,233)(228,237)(231,234)(232,238)(236,239)(241,273)(242,277)
(243,281)(244,285)(245,274)(246,278)(247,282)(248,286)(249,275)(250,279)
(251,283)(252,287)(253,276)(254,280)(255,284)(256,288)(258,261)(259,265)
(260,269)(263,266)(264,270)(268,271);;
s3 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)
(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)
(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)
(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)
(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)
(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)
(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256)
(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)(271,272)
(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)(287,288);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1*s0*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(288)!( 3, 4)( 7, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)
( 26, 46)( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 49, 97)
( 50, 98)( 51,100)( 52, 99)( 53,101)( 54,102)( 55,104)( 56,103)( 57,109)
( 58,110)( 59,112)( 60,111)( 61,105)( 62,106)( 63,108)( 64,107)( 65,129)
( 66,130)( 67,132)( 68,131)( 69,133)( 70,134)( 71,136)( 72,135)( 73,141)
( 74,142)( 75,144)( 76,143)( 77,137)( 78,138)( 79,140)( 80,139)( 81,113)
( 82,114)( 83,116)( 84,115)( 85,117)( 86,118)( 87,120)( 88,119)( 89,125)
( 90,126)( 91,128)( 92,127)( 93,121)( 94,122)( 95,124)( 96,123)(147,148)
(151,152)(153,157)(154,158)(155,160)(156,159)(161,177)(162,178)(163,180)
(164,179)(165,181)(166,182)(167,184)(168,183)(169,189)(170,190)(171,192)
(172,191)(173,185)(174,186)(175,188)(176,187)(193,241)(194,242)(195,244)
(196,243)(197,245)(198,246)(199,248)(200,247)(201,253)(202,254)(203,256)
(204,255)(205,249)(206,250)(207,252)(208,251)(209,273)(210,274)(211,276)
(212,275)(213,277)(214,278)(215,280)(216,279)(217,285)(218,286)(219,288)
(220,287)(221,281)(222,282)(223,284)(224,283)(225,257)(226,258)(227,260)
(228,259)(229,261)(230,262)(231,264)(232,263)(233,269)(234,270)(235,272)
(236,271)(237,265)(238,266)(239,268)(240,267);
s1 := Sym(288)!( 1,193)( 2,194)( 3,196)( 4,195)( 5,205)( 6,206)( 7,208)
( 8,207)( 9,201)( 10,202)( 11,204)( 12,203)( 13,197)( 14,198)( 15,200)
( 16,199)( 17,225)( 18,226)( 19,228)( 20,227)( 21,237)( 22,238)( 23,240)
( 24,239)( 25,233)( 26,234)( 27,236)( 28,235)( 29,229)( 30,230)( 31,232)
( 32,231)( 33,209)( 34,210)( 35,212)( 36,211)( 37,221)( 38,222)( 39,224)
( 40,223)( 41,217)( 42,218)( 43,220)( 44,219)( 45,213)( 46,214)( 47,216)
( 48,215)( 49,145)( 50,146)( 51,148)( 52,147)( 53,157)( 54,158)( 55,160)
( 56,159)( 57,153)( 58,154)( 59,156)( 60,155)( 61,149)( 62,150)( 63,152)
( 64,151)( 65,177)( 66,178)( 67,180)( 68,179)( 69,189)( 70,190)( 71,192)
( 72,191)( 73,185)( 74,186)( 75,188)( 76,187)( 77,181)( 78,182)( 79,184)
( 80,183)( 81,161)( 82,162)( 83,164)( 84,163)( 85,173)( 86,174)( 87,176)
( 88,175)( 89,169)( 90,170)( 91,172)( 92,171)( 93,165)( 94,166)( 95,168)
( 96,167)( 97,241)( 98,242)( 99,244)(100,243)(101,253)(102,254)(103,256)
(104,255)(105,249)(106,250)(107,252)(108,251)(109,245)(110,246)(111,248)
(112,247)(113,273)(114,274)(115,276)(116,275)(117,285)(118,286)(119,288)
(120,287)(121,281)(122,282)(123,284)(124,283)(125,277)(126,278)(127,280)
(128,279)(129,257)(130,258)(131,260)(132,259)(133,269)(134,270)(135,272)
(136,271)(137,265)(138,266)(139,268)(140,267)(141,261)(142,262)(143,264)
(144,263);
s2 := Sym(288)!( 2, 5)( 3, 9)( 4, 13)( 7, 10)( 8, 14)( 12, 15)( 17, 33)
( 18, 37)( 19, 41)( 20, 45)( 21, 34)( 22, 38)( 23, 42)( 24, 46)( 25, 35)
( 26, 39)( 27, 43)( 28, 47)( 29, 36)( 30, 40)( 31, 44)( 32, 48)( 49, 65)
( 50, 69)( 51, 73)( 52, 77)( 53, 66)( 54, 70)( 55, 74)( 56, 78)( 57, 67)
( 58, 71)( 59, 75)( 60, 79)( 61, 68)( 62, 72)( 63, 76)( 64, 80)( 82, 85)
( 83, 89)( 84, 93)( 87, 90)( 88, 94)( 92, 95)( 97,129)( 98,133)( 99,137)
(100,141)(101,130)(102,134)(103,138)(104,142)(105,131)(106,135)(107,139)
(108,143)(109,132)(110,136)(111,140)(112,144)(114,117)(115,121)(116,125)
(119,122)(120,126)(124,127)(146,149)(147,153)(148,157)(151,154)(152,158)
(156,159)(161,177)(162,181)(163,185)(164,189)(165,178)(166,182)(167,186)
(168,190)(169,179)(170,183)(171,187)(172,191)(173,180)(174,184)(175,188)
(176,192)(193,209)(194,213)(195,217)(196,221)(197,210)(198,214)(199,218)
(200,222)(201,211)(202,215)(203,219)(204,223)(205,212)(206,216)(207,220)
(208,224)(226,229)(227,233)(228,237)(231,234)(232,238)(236,239)(241,273)
(242,277)(243,281)(244,285)(245,274)(246,278)(247,282)(248,286)(249,275)
(250,279)(251,283)(252,287)(253,276)(254,280)(255,284)(256,288)(258,261)
(259,265)(260,269)(263,266)(264,270)(268,271);
s3 := Sym(288)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)
(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)
(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)
(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)
(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)
(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)
(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)
(255,256)(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)
(271,272)(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)
(287,288);
poly := sub<Sym(288)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1*s0*s2*s3 >;
References : None.
to this polytope